Page 43 - 《精细化工》2021年第3期
P. 43
第 3 期 王鹏飞,等: 三聚氰胺树脂碳基材料在电化学储能中的研究进展 ·463·
N-doped carbon nanosheets as high-performance anodes for Li- and [64] WANG H Y, JIANG H, HU Y J, et al. Interface-engineered MoS 2/C
Na-ion batteries[J]. Journal of Materials Research, 2020, 35(1): 12-19. nanosheet heterostructure arrays for ultra-stable sodium-ion
[51] BIN D S, LIN X J, SUN Y G, et al. Engineering hollow carbon batteries[J]. Chemical Engineering Science, 2017, 174: 104-111.
architecture for high-performance K-ion battery anode[J]. Journal of [65] NING X H, LIU Z, HU A P, et al. In-situ construction of
the American Chemical Society, 2018, 140(23): 7127-7134. interconnected N-doped porous carbon-carbon nanotubes networks
[52] KANG C, CHA E, PATEL M D, et al. Three-dimensional carbon derived from melamine anchored with MoS 2 for high performance
nanostructures for advanced lithium-ion batteries[J]. Journal of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018,
Carbon Research, 2016, 2(4): 23. 744: 75-81.
[53] JITTMONKONG K, RODDECHA S, SRIARIYANUN M. One-pot [66] YU J, FU N, ZHAO J, et al. High specific capacitance electrode
synthesis of LiFePO 4 nano-particles entrapped in mesoporous material for supercapacitors based on resin-derived nitrogen-doped
melamine-formaldehyde matrix as the promising cathode materials porous carbons[J]. ACS Omega, 2019, 4(14): 15904-15911.
for the next generation lithium-ion batteries[J]. Materials Today: [67] LIN X Q, LÜ Q F, LI Q, et al. Fabrication of low-cost and
Proceedings, 2019, 17: 1284-1292. ecofriendly porous biocarbon using konjaku flour as the raw material
[54] REN Y R, LU P, HUANG X B, et al. High performance for high-performance supercapacitor application[J]. ACS Omega,
Li 4Ti 5O 12/CN anode material promoted by melamine-formaldehyde 2018, 3(10): 13283-13289.
resin as carbon-nitrogen precursor[J]. RSC Advances, 2015, 5(69): [68] XIONG W, KANG J H, JUNG Y. Preparation of nitrogen-doped
55994-56000. porous carbon from melamine-formaldehyde resins crosslinked by
[55] LIANG C L, LI J L, TIAN Q, et al. Nitrogen-doped carbon-coated phytic acid[J]. International Journal of Electrochemical Science,
Fe 3O 4/rGO nanocomposite anode material for enhanced initial 2018, 13: 852-862.
coulombic efficiency of lithium-ion batteries[J]. Ionics, 2019, 25(4): [69] ZHANG N, LIU F, XU S D, et al. Nitrogen-phosphorus co-doped
1513-1521. hollow carbon microspheres with hierarchical micro-meso-macroporous
[56] SCHULZ N, HAUSBRAND R, WITTICH C, et al. XPS-surface shells as efficient electrodes for supercapacitors[J]. Journal of
analysis of SEI layers on Li-ion cathodes: Part Ⅱ. SEI-composition Materials Chemistry A, 2017, 5(43): 22631-22640.
and formation inside composite electrodes[J]. Journal of the [70] WANG M, LIU H, ZHAI D D, et al. In-situ synthesis of highly
Electrochemical Society, 2018, 165(5): A833. nitrogen, sulfur co-doped carbon nanosheets from melamine-
[57] YANG T T, ZHU W K, LIU W L, et al. Preparation of yolk-shell formaldehyde-thiourea resin with improved cycling stability and
Fe 3O 4@ N-doped carbon nanocomposite particles as anode in lithium energy density for supercapacitors[J]. Journal of Power Sources,
ion batteries[J]. Journal of Materials Science: Materials in 2019, 416: 79-88.
Electronics, 2017, 28(16): 11569-11575. [71] LI M, ZHANG Y Q, YANG L L, et al. Hollow melamine resin-based
[58] MA Q, XIE H W, QU J K, et al. Tailoring the polymer-derived carbon spheres/graphene composite with excellent performance for
carbon encapsulated silicon nanoparticles for high-performance supercapacitors[J]. Electrochimica Acta, 2015, 166: 310-319.
lithium-ion battery anodes[J]. ACS Applied Energy Materials, 2019, [72] WANG L, GAO Z Y, CHANG J L, et al. Nitrogen-doped porous
3(1): 268-278. carbons as electrode materials for high-performance supercapacitor
[59] CAI D D, LI D D, WANG S Q, et al. High rate capability of and dye-sensitized solar cell[J]. ACS Applied Materials & Interfaces,
TiO 2/nitrogen-doped graphene nanocomposite as an anode material 2015, 7(36): 20234-20244.
for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2013, [73] WU G L, WU L L, JIN J H, et al. Structure and electrochemical
561: 54-58. performance of melamine/graphene aerogel composite for supercapacitors
[60] ZHANG Y Q, MA Q, WANG S L, et al. Poly(vinyl alcohol)-assisted [C]//Materials Science Forum. Switzerland: Trans Tech Publications
fabrication of hollow carbon spheres/reduced graphene oxide Ltd., 2017, 898: 1844-1849.
nanocomposites for high-performance lithium-ion battery anodes[J]. [74] DU J H, LI Q, QIN C L, et al. Preparation and electrochemical
ACS Nano, 2018, 12(5): 4824-4834. performance of nitrogen-enriched carbon based on melamine
[61] SUI Z Y, WANG C, YANG Q S, et al. A highly nitrogen-doped formaldehyde resin/graphene oxide composites[J]. Pigment & Resin
porous graphene-An anode material for lithium ion batteries[J]. Technology, 2015, 44(4): 205-213.
Journal of Materials Chemistry A, 2015, 3(35): 18229-18237. [75] YUE J J, ZHANG H, ZHANG Y Q, et al. Coral-like carbon
[62] LIU H, ZHANG F, LI W Y, et al. Porous tremella-like structures derived from the complex of metal-organic frameworks
MoS 2/polyaniline hybrid composite with enhanced performance for and melamine formaldehyde resin with ideal electrochemical
lithium-ion battery anodes[J]. Electrochimica Acta, 2015, 167: 132-138. performances[J]. Electrochimica Acta, 2020, 353: 136528.
[63] COOK J B, KIM H S, YAN Y, et al. Mesoporous MoS 2 as a [76] LI Y Y, XIA W, ZOU R Q, et al. Facile fabrication of N-doped
transition metal dichalcogenide exhibiting pseudocapacitive Li and hierarchical porous carbon@CNT coaxial nanocables with high
Na-ion charge storage[J]. Advanced Energy Materials, 2016, 6(9): performance for energy storage and conversion[J]. RSC Advances,
1501937. 2015, 5(117): 96580-96586.