Page 195 - 《精细化工》2021年第4期
P. 195
第 4 期 董沛沛,等: 多孔普鲁士蓝类似物的合成及电催化析氧性能 ·829·
活性面积增大,这些因素的协同作用最终导致其 450-454.
[15] ZOU H H, YUAN C Z, ZOU H Y, et al. Bimetallic phosphide hollow
OER 性能提升。 nanocubes derived from a Prussian-blue-analog used as
high-performance catalysts for the oxygen evolution reaction[J].
3 结论 Catalysis Science & Technology, 2017, 7(7): 1549-1555.
[16] YU X Y, FENG Y, GUAN B Y, et al. Carbon coated porous nickel
phosphides nanoplates for highly efficient oxygen evolution
(1)对 NF 和 CC 均进行溶剂热处理,结果表 reaction[J]. Energy & Environmental Science, 2016, 9(4): 1246-1250.
明,表面光滑的单晶结构 CC 经过溶剂热处理之后 [17] HAN L, YU X Y, LOU X Y, et al. Formation of Prussian-blue-analog
nanocages via a direct etching method and their conversion into
所得 CCP 仍然为实心立方体结构。而 NF 表面变得 Ni-Co-mixed oxide for enhanced oxygen evolution[J]. Advanced
粗糙成为多孔材料,说明介晶结构的 NF 有利于在 Materials, 2016, 28(23): 4601-4605.
[18] HU E L, NING J Q, ZHAO D, et al. A room-temperature
IPA 的作用下发生刻蚀作用,从而形成多孔结构。 postsynthetic ligand exchange strategy to construct mesoporous
(2)多孔结构的 NFP 具有较大的比表面积 Fe-doped CoP hollow triangle plate arrays for efficient
2
(338.70 m /g),更多的催化活性位点,较小的电荷 electrocatalytic water splitting[J]. Small, 2018, 14(14): 1704233.
[19] NAI J W, WANG S B, LOU X W. Ordered colloidal clusters
转移电阻,因而具有增强的 OER 电催化性能。 constructed by nanocrystals with valence for efficient CO 2
photoreduction[J]. Science Advances, 2019, 5(12): eaax5095.
参考文献: [20] FENG Y, YU X Y, PAIK U. Nickel cobalt phosphides quasi-hollow
nanocubes as an efficient electrocatalyst for hydrogen evolution in
[1] JO S, NOH S, WEE K R, et al. Structural features of porous CoFe alkaline solution[J]. Chemical Communications, 2016, 52(8):
nanocubes and their performance for oxygen-involving energy 1633-1636.
electrocatalysis[J]. ChemElectroChem, 2020, 7(18): 3725-3732. [21] BAI Y, ZHANG G X, ZHENG S S, et al. Pyridine-modulated Ni/Co
[2] INDRA A, PAIK U, SONG T. Boosting electrochemical water bimetallic metal-organic framework nanoplates for electrocatalytic
oxidation with metal hydroxide carbonate templated Prussian blue oxygen evolution[J]. Science China Materials, 2021, 64(1): 137-148.
analogues[J]. Angewandte Chemie International Edition, 2018, 57(5): [22] GUO Y L, ZHOU Y, NAN Y L, et al. Ni-based
1241-1245. nanoparticle-embedded N-doped carbon nanohorns derived from
[3] MA J Z, WANG Y Q, PAN W, et al. Preparation of hierarchical double core-shell CNH@PDA@NiMOFs for oxygen electrocatalysis[J].
cube-on-plate metal phosphides as bifunctional electrocatalysts for ACS Applied Materials & Interfaces, 2020, 12(11): 12743-12754.
overall water splitting[J]. Chemistry-An Asian Journal, 2020, 15(9): [23] XUAN C J, WANG J, XIA W W, et al. Porous structured Ni-Fe-P
1500-1504. nanocubes derived from a Prussian blue analogue as an
[4] NAI J W, LU Y, YU L, et al. Formation of Ni-Fe mixed diselenide electrocatalyst for efficient overall water splitting[J]. ACS Applied
nanocages as a superior oxygen evolution electrocatalyst[J]. Advanced Materials & Interfaces, 2017, 9(31): 26134-26142.
Materials, 2017, 29(41): 1703870. [24] ZENG Y H,CHEN G F,JIANG Z Y, et al. Confined heat treatment
[5] FENG Y Q, WANG X, HUANG J F, et al. Decorating CoNi layered Prussian blue analogue for enhanced electrocatalytic oxygen
double hydroxides nanosheet arrays with fullerene quantum dot evolution[J]. Journal of Materials Chemistry A, 2018, 6(33):
anchored on Ni foam for efficient electrocatalytic water splitting and 15942-15946.
urea electrolysis[J]. Chemical Engineering Journal, 2020, 390: 124525.
[6] YAQOOB L, NOOR T, IQBAL N, et al. Nanocomposites of cobalt [25] DING X, UDDIN W, SHENG H T, et al. Porous transition metal
phosphides derived from Fe-based Prussian blue analogue for oxygen
benzene tricarboxylic acid MOF with rGO: An efficient and robust evolution reaction[J]. Journal of Alloys and Compounds, 2020, 814:
electocatalyst for oxygen evaluation reaction (OER)[J]. Renewable 152332.
Energy, 2020, 156: 1040-1054.
[7] XU X, LIANG H F, MING F W, et al. Prussian blue analogues [26] QU H Q, MA Y R, GOU Z L, et al. Ni 2P/C nanosheets derived from
oriented growth Ni-MOF on nickel foam for enhanced
derived penroseite (Ni, Co) Se 2 nanocages anchored on 3D graphene
aerogel for efficient water splitting[J]. ACS Catalysis, 2017, 7(9): electrocatalytic hydrogen evolution[J]. Journal of Colloid and
6394-6399. Interface Science, 2020, 572: 83-90.
[8] FENG Y Q, WANG X, DONG P P, et al. Boosting the activity of [27] WANG X, YU L, GUAN B Y, et al. Metal-organic framework
Prussian-blue analogue as efficient electrocatalyst for water and urea hybrid-assisted formation of Co 3O 4/Co-Fe oxide double-shelled
oxidation[J]. Scientific Reports, 2019, 9(1): 1-11. nanoboxes for enhanced oxygen evolution[J]. Advanced Materials,
[9] ZHAO D N, LU Y Z, MA D G. Effects of structure and constituent of 2018, 30(29): 1801211.
Prussian blue analogs on their application in oxygen evolution [28] ZHAO D K, TANG Z H, XU W, et al. N, S-codoped CNTs supported
reaction[J]. Molecules, 2020, 25(10): 2304. Co 4S 3 nanoparticles prepared by using CdS nanorods as sulfur
[10] CARNE-SANCHEZ A, IMAZ I, STYLIANOU K C, et al. sources and hard templates: An efficient catalyst for reversible
Metal-organic frameworks: From molecules/metal ions to crystals to oxygen electrocatalysis[J]. Journal of Colloid and Interface Science,
superstructures[J]. Chemistry-A European Journal, 2014, 20(18): 2020, 560: 186-197.
5192-5201. [29] SU X Z, WANG Y, ZHOU J, et al. Operando spectroscopic
[11] BIRADHA K, GOSWAMI A, MOI R. Coordination polymers as identification of active sites in NiFe Prussian blue analogues as
heterogeneous catalysts in hydrogen evolution and oxygen evolution electrocatalysts: Activation of oxygen atoms for oxygen evolution
reactions[J]. Chemical Communications, 2020, 56: 10824-10842. reaction[J]. Journal of the American Chemical Society, 2018,
[12] CHENG W R, LU X F, LUAN D Y, et al. NiMn-based 140(36): 11286-11292.
bimetal-organic framework nanosheets supported on multi-channel [30] SHEN Y, GUO S G, DU F, et al. Prussian blue analogue-derived Ni
carbon fibers for efficient oxygen electrocatalysis[J]. Angewandte and Co bimetallic oxide nanoplate arrays block-built from porous and
Chemie International Edition, 2020, 59(41):18234-18239. hollow nanocubes for the efficient oxygen evolution reaction[J].
[13] ZHANG X, WU Y H, SUN Y F, et al. CoFeP hollow cube as Nanoscale, 2019, 11(24): 11765-11773.
advanced electrocatalyst for water oxidation[J]. Inorganic Chemistry [31] LI W, NIU Y L, WU X J, et al. Heterostructured CoSe 2/FeSe 2
Frontiers, 2019, 6(2): 604-611. nanoparticles with abundant vacancies and strong electronic coupling
[14] HU L, ZHANG R R, WEI L Z, et al. Synthesis of FeCo nanocrystals supported on carbon nanorods for oxygen evolution
encapsulated in nitrogen-doped graphene layers for use as highly electrocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2020,
efficient catalysts for reduction reactions[J]. Nanoscale, 2015, 7(2): 8(11): 4658-4666.