Page 195 - 《精细化工》2021年第4期
P. 195

第 4 期                    董沛沛,等:  多孔普鲁士蓝类似物的合成及电催化析氧性能                                    ·829·


            活性面积增大,这些因素的协同作用最终导致其                                  450-454.
                                                               [15]  ZOU H H, YUAN C Z, ZOU H Y, et al. Bimetallic phosphide hollow
            OER 性能提升。                                              nanocubes derived from a Prussian-blue-analog used as
                                                                   high-performance  catalysts for the oxygen evolution reaction[J].
            3    结论                                                Catalysis Science & Technology, 2017, 7(7): 1549-1555.
                                                               [16]  YU X Y, FENG Y, GUAN B Y, et al. Carbon coated porous nickel
                                                                   phosphides nanoplates for highly efficient oxygen  evolution
                (1)对 NF 和 CC 均进行溶剂热处理,结果表                          reaction[J]. Energy & Environmental Science, 2016, 9(4): 1246-1250.
            明,表面光滑的单晶结构 CC 经过溶剂热处理之后                           [17]  HAN L, YU X Y, LOU X Y, et al. Formation of Prussian-blue-analog
                                                                   nanocages  via a direct etching method and their conversion into
            所得 CCP 仍然为实心立方体结构。而 NF 表面变得                            Ni-Co-mixed oxide for enhanced oxygen evolution[J].  Advanced
            粗糙成为多孔材料,说明介晶结构的 NF 有利于在                               Materials, 2016, 28(23): 4601-4605.
                                                               [18]  HU E L, NING J Q, ZHAO D,  et al. A room-temperature
            IPA 的作用下发生刻蚀作用,从而形成多孔结构。                               postsynthetic ligand exchange strategy to construct  mesoporous
                (2)多孔结构的 NFP 具有较大的比表面积                             Fe-doped CoP hollow triangle plate arrays for efficient
                      2
            (338.70 m /g),更多的催化活性位点,较小的电荷                          electrocatalytic water splitting[J]. Small, 2018, 14(14): 1704233.
                                                               [19]  NAI J W, WANG S B,  LOU X W. Ordered colloidal clusters
            转移电阻,因而具有增强的 OER 电催化性能。                                constructed by nanocrystals with  valence for efficient CO 2
                                                                   photoreduction[J]. Science Advances, 2019, 5(12): eaax5095.
            参考文献:                                              [20]  FENG Y, YU X Y, PAIK U. Nickel cobalt phosphides quasi-hollow
                                                                   nanocubes as an efficient electrocatalyst for hydrogen evolution in
            [1]   JO S, NOH S, WEE K R, et al. Structural features of porous CoFe   alkaline solution[J].  Chemical  Communications, 2016, 52(8):
                 nanocubes and their performance for oxygen-involving energy   1633-1636.
                 electrocatalysis[J]. ChemElectroChem, 2020, 7(18): 3725-3732.   [21]  BAI Y, ZHANG G X, ZHENG S S, et al. Pyridine-modulated Ni/Co
            [2]   INDRA A, PAIK U, SONG T. Boosting electrochemical water   bimetallic  metal-organic framework nanoplates for electrocatalytic
                 oxidation with metal hydroxide carbonate templated Prussian blue   oxygen evolution[J]. Science China Materials, 2021, 64(1): 137-148.
                 analogues[J]. Angewandte Chemie International Edition, 2018, 57(5):   [22]  GUO  Y L, ZHOU  Y, NAN  Y  L,  et al. Ni-based
                 1241-1245.                                        nanoparticle-embedded N-doped carbon nanohorns  derived from
            [3]   MA  J Z, WANG Y  Q,  PAN W,  et al. Preparation of hierarchical   double core-shell CNH@PDA@NiMOFs for oxygen electrocatalysis[J].
                 cube-on-plate  metal phosphides as bifunctional electrocatalysts for   ACS Applied Materials & Interfaces, 2020, 12(11): 12743-12754.
                 overall water splitting[J]. Chemistry-An Asian Journal, 2020, 15(9):   [23]  XUAN C J, WANG J, XIA W W, et al. Porous structured Ni-Fe-P
                 1500-1504.                                        nanocubes derived from a Prussian blue analogue as an
            [4]   NAI J W, LU Y, YU L, et al. Formation of Ni-Fe mixed diselenide   electrocatalyst for efficient overall water splitting[J]. ACS Applied
                 nanocages as a superior oxygen evolution electrocatalyst[J]. Advanced   Materials & Interfaces, 2017, 9(31): 26134-26142.
                 Materials, 2017, 29(41): 1703870.             [24] ZENG Y H,CHEN G F,JIANG Z Y, et al. Confined heat treatment
            [5]   FENG Y Q, WANG X, HUANG J F, et al. Decorating CoNi layered   Prussian  blue analogue for enhanced electrocatalytic oxygen
                 double hydroxides nanosheet arrays with fullerene quantum dot   evolution[J]. Journal of Materials Chemistry A, 2018, 6(33):
                 anchored on Ni foam for efficient electrocatalytic water splitting and   15942-15946.
                 urea electrolysis[J]. Chemical Engineering Journal, 2020, 390: 124525.
            [6]   YAQOOB L, NOOR T, IQBAL N, et al. Nanocomposites of cobalt   [25]  DING X, UDDIN  W, SHENG H T,  et al. Porous transition metal
                                                                   phosphides derived from Fe-based Prussian blue analogue for oxygen
                 benzene tricarboxylic acid MOF with rGO: An efficient and robust   evolution reaction[J]. Journal of Alloys and Compounds, 2020, 814:
                 electocatalyst for oxygen evaluation reaction (OER)[J].  Renewable   152332.
                 Energy, 2020, 156: 1040-1054.
            [7]   XU X, LIANG H  F, MING F W,  et al. Prussian  blue analogues   [26]  QU H Q, MA Y R, GOU Z L, et al. Ni 2P/C nanosheets derived from
                                                                   oriented  growth Ni-MOF on nickel foam for enhanced
                 derived penroseite (Ni, Co) Se 2 nanocages anchored on 3D graphene
                 aerogel for efficient water splitting[J]. ACS Catalysis,  2017,  7(9):   electrocatalytic hydrogen evolution[J]. Journal of Colloid and
                 6394-6399.                                        Interface Science, 2020, 572: 83-90.
            [8]   FENG  Y Q,  WANG X, DONG P P,  et al. Boosting the activity of   [27]  WANG X, YU L, GUAN  B Y,  et al. Metal-organic framework
                 Prussian-blue analogue as efficient electrocatalyst for water and urea   hybrid-assisted  formation of Co 3O 4/Co-Fe oxide double-shelled
                 oxidation[J]. Scientific Reports, 2019, 9(1): 1-11.   nanoboxes for enhanced oxygen evolution[J]. Advanced Materials,
            [9]   ZHAO D N, LU Y Z, MA D G. Effects of structure and constituent of   2018, 30(29): 1801211.
                 Prussian blue analogs on their application in oxygen evolution   [28]  ZHAO D K, TANG Z H, XU W, et al. N, S-codoped CNTs supported
                 reaction[J]. Molecules, 2020, 25(10): 2304.       Co 4S 3 nanoparticles prepared by using CdS nanorods as sulfur
            [10]  CARNE-SANCHEZ A, IMAZ I,  STYLIANOU K  C,  et al.   sources and hard  templates: An  efficient catalyst for  reversible
                 Metal-organic frameworks: From molecules/metal ions to crystals to   oxygen electrocatalysis[J]. Journal of Colloid and Interface Science,
                 superstructures[J]. Chemistry-A European Journal, 2014, 20(18):   2020, 560: 186-197.
                 5192-5201.                                    [29]  SU X Z, WANG Y, ZHOU J,  et al. Operando spectroscopic
            [11]  BIRADHA K, GOSWAMI A, MOI  R. Coordination polymers  as   identification of active sites in NiFe Prussian blue analogues as
                 heterogeneous catalysts in hydrogen evolution and oxygen evolution   electrocatalysts: Activation  of oxygen atoms for oxygen evolution
                 reactions[J]. Chemical Communications, 2020, 56: 10824-10842.   reaction[J]. Journal of the American Chemical Society, 2018,
            [12]  CHENG W  R,  LU X F, LUAN D Y,  et al.  NiMn-based   140(36): 11286-11292.
                 bimetal-organic framework nanosheets supported on multi-channel   [30]  SHEN Y, GUO S G, DU F, et al. Prussian blue analogue-derived Ni
                 carbon fibers for efficient  oxygen electrocatalysis[J]. Angewandte   and Co bimetallic oxide nanoplate arrays block-built from porous and
                 Chemie International Edition, 2020, 59(41):18234-18239.   hollow nanocubes  for  the efficient oxygen evolution reaction[J].
            [13]  ZHANG X, WU  Y H, SUN Y F,  et al. CoFeP hollow cube as   Nanoscale, 2019, 11(24): 11765-11773.
                 advanced electrocatalyst for water oxidation[J]. Inorganic Chemistry   [31]  LI W, NIU  Y  L,  WU X J,  et al. Heterostructured  CoSe 2/FeSe 2
                 Frontiers, 2019, 6(2): 604-611.                   nanoparticles with abundant vacancies and strong electronic coupling
            [14]  HU L, ZHANG R R, WEI L Z, et al. Synthesis of FeCo nanocrystals   supported  on  carbon  nanorods  for  oxygen  evolution
                 encapsulated in nitrogen-doped  graphene layers for use as highly   electrocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2020,
                 efficient catalysts for reduction reactions[J]. Nanoscale, 2015, 7(2):   8(11): 4658-4666.
   190   191   192   193   194   195   196   197   198   199   200