Page 133 - 《精细化工》2021年第5期
P. 133
第 5 期 文 曼,等: CuO-SiO 2 气凝胶@TiO 2 纳米纤维无牺牲剂光催化还原 CO 2 ·987·
3 结论 [11] ARAGAWA B A, PANA C J, SUB W N, et al. Facile one-pot
controlled synthesis of Sn and C codoped single crystal TiO 2 nanowire
arrays for highly efficient photoelectrochemical water splitting[J].
通过气相水解成功地在 CuO-SiO 2 复合气凝胶
Applied Catalysis B: Environmental, 2015, 163: 478-486.
表面生长了分散性良好、直径~16 nm 的 TiO 2 纳米 [12] FENG X J, SHANHAR K, VARGHESE O K, et al. Vertically aligned
纤维,焙烧后得到高结晶度的锐钛矿 TiO 2 。结晶度 single crystal TiO 2 nanowire arrays grown directly on transparent
conducting oxide coated glass: Synthesis details and applications[J].
高的纳米纤维更利于光生电子的迁移,减慢了电子- Nano Letters, 2008, 11: 3781-3786.
空穴对的复合速率,降低了荧光强度。在光催化还 [13] WU J M, TANG M L. Hydrothermal growth of nanometer-to
原 CO 2 反应中,TiO 2 纤维表面负载的 CuO 及凝胶中 micrometer-size anatase single crystals with exposed (001) facets and
their ability to assist photodegradation of rhodamine B in water[J].
的 CuO 都能将激发电子转移到 TiO 2 导带上,提高 Journal of Hazardous Materials, 2011, 190(1/2/3): 566-573.
光生载流子的数量,在没有牺牲剂存在下进行光催 [14] ZHANG H M, WANG Y, LIU P R, et al. Anatase TiO 2 crystal facet
growth: Mechanistic role of hydrofluoric acid and photoelectrocatalytic
化反应,甲醇产率提高到 1589.0 μmol/g-cat。为进
activity[J]. ACS Applied Materials & Interfaces, 2011, 3: 2472-2478.
一步改善催化剂的性能,后续拟通过调节气凝胶中 [15] BI Y T (毕于铁), REN H B (任洪波), ZHANG Q J (张庆军), et al.
CuO 含量与 TiO 2 表面 CuO 负载量,进一步探讨 CuO Synthesis and characterization of copper-based aerogel[J]. Atomic
Energy Science and Technology (原子能科学技术), 2012, 46(11):
对 TiO 2 光催化性能的影响。 1292-1295.
[16] ABDULLAH H, KHAN M R, PUDUKUDY M, et al. CeO 2-TiO 2 as
参考文献: a visible light active catalyst for the photoreduction of CO 2 to
[1] ODHIAMBO V O, ONGARBAYEVA A, KERI O, et al.Synthesis of methanol[J]. Journal of Rare Earths, 2015, 33(11): 1155-1161.
TiO 2/WO 3 composite nanofibers by a water-based electrospinning [17] LI Y Y, FENG X, LI Z H.Visible-light-initiated sonogashira coupling
process and their application in photocatalysis[J]. Nanomaterials (Basel), reactions over CuO/TiO 2 nanocomposites[J]. Catalysis Science &
2020, 10: 882-893. Technology, 2019, 9(2): 377-383.
[2] SHUANG S, LV R T, CUI X Y, et al. Efficient photocatalysis with [18] XIAO S (肖洒), TAN H (谈恒), WU S N (吴珊妮), et al. Preparation
graphene oxide/Ag/Ag 2S-TiO 2 nanocomposites under visible light of CuO/Er-Yb-TiO 2 and catalytic synthesis of methanol from CO 2
irradiation[J]. RSC Advances, 2018, 8(11): 5784-5791. under simulated visible-light[J]. Materials Review (材料导报), 2020,
[3] FANG B Z, XING Y L, BONAKDARPOUR A, et al. Hierarchical 3(1): 2005-2009.
CuO-TiO 2 hollow microspheres for highly efficient photodriven reduction [19] TAN H (谈恒), XIAO S (肖洒), YAO S R (姚淑荣), et al. Visible
of CO 2 to CH 4[J]. ACS Sustainable Chemistry & Engineering, 2015, light driven reduction of CO 2 to methanol over CuO/TiO 2 nanofibers[J].
3(10): 2381-2388. Fine Chemicals (精细化工), 2019, 36(6): 1210-1216.
[4] MOHD A M A, MUHD J N, AMIR M N I, et al. Effect on different [20] JI J Y, HE H Q, CHEN C, et al. Biomimetic hierarchical TiO 2@CuO
TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: A nanowire arrays-coated copper meshes with superwetting and self-
review[J]. International Journal of Environmental Science and cleaning properties for efficient oil/water separation[J]. ACS Sustainable
Technology, 2018, 16: 547-566. Chemistry & Engineering, 2018, 7(2): 2569-2577.
[5] KAVIL Y N, SHABAN Y A, FARAWATI A R K, et al. Photocatalytic [21] JIN J, HE T. Facile synthesis of Bi 2S 3 nanoribbons for photocatalytic
conversion of CO 2 into methanol over Cu-C/TiO 2 nanoparticles reduction of CO 2 into CH 3OH[J]. Applied Surface Science, 2017,
under UV light and natural sunlight[J]. Journal of Photochemistry 394: 364-370.
and Photobiology A: Chemistry, 2017, 347: 244-253. [22] SONG W J, YOSHITAKE M. A work function study of ultra-thin
[6] ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of alumina formation on NiAl(110) surface[J]. Applied Surface Science,
the morphology of 1D TiO 2 nanostructures on photogeneration of 2005, 251(1/2/3/4): 14-18.
reactive oxygen species and enhanced photocatalytic activity[J]. [23] LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for
Journal of Molecular Liquids, 2019, 281: 59-69. stable visible water splitting via a two-electron pathway[J]. Science,
[7] HU L M (胡黎明), YAN J T (闫俊涛), WANG C L (王春蕾), et al. 2015, 347(6225): 970-974.
Direct electrospinning method for the construction of Z-scheme [24] ABDULLAH H, KHAN R M, PUDUKUDY M, et al. CeO 2-TiO 2 as
TiO 2/g-C 3N 4/RGO ternary heterojunction photocatalysts with remarkably a visible light active catalyst for the photoreduction of CO 2 to
ameliorated photocatalytic performance[J]. Chinese Journal of Catalysis methanol[J]. Journal of Rare Earths, 2015, 33: 1155-1161.
3+
(催化学报), 2019, 40(3): 458-469. [25] CHEN X Y, YE X Z, HE J X, et al. Preparation of Fe -doped TiO 2
[8] HE G Y, ZHANG J H, HU Y, et al. Dual-template synthesis of aerogels for photocatalytic reduction of CO 2 to methanol[J]. Journal
mesoporous TiO 2 nanotubes with structure-enhanced functional of Sol-Gel Science and Technology, 2020, 95(2): 353-359.
photocatalytic performance[J]. Applied Catalysis B: Environmental, [26] ALBO J, QADIR M I, SAMPERI M, et al. Use of an optofluidic
2019, 250: 301-312. microreactor and Cu nanoparticles synthesized in ionic liquid and
[9] XU F Y, ZHANG J T, ZHU B C, et al. CuInS 2 sensitized TiO 2 hybrid embedded in TiO 2 for an efficient photoreduction of CO 2 to methanol[J].
nanofibers for improved photocatalytic CO 2 reduction[J]. Applied Chemical Engineering Journal, 2021, 404: 126643-126654.
Catalysis B: Environmental, 2018, 230(1): 194-202. [27] GUSAIN R, KUMAR P, SHARMA O P, et al. Reduced graphene
[10] QIAN R F, ZONG H X, SCHNEIDER J, et al.Charge carrier oxide-CuO nanocomposites for photocatalytic conversion of CO 2
trapping, recombination and transfer during TiO 2 photocatalysis: An into methanol under visible light irradiation[J]. Applied Catalysis B:
overview[J]. Catalysis Today, 2019, 335: 78-90. Environmental, 2016, 181: 352-362.