Page 133 - 《精细化工》2021年第5期
P. 133

第 5 期               文   曼,等: CuO-SiO 2 气凝胶@TiO 2 纳米纤维无牺牲剂光催化还原 CO 2                      ·987·


            3   结论                                             [11]  ARAGAWA B A, PANA C J, SUB W N,  et al.  Facile one-pot
                                                                   controlled synthesis of Sn and C codoped single crystal TiO 2 nanowire
                                                                   arrays for highly efficient  photoelectrochemical water splitting[J].
                 通过气相水解成功地在 CuO-SiO 2 复合气凝胶
                                                                   Applied Catalysis B: Environmental, 2015, 163: 478-486.
            表面生长了分散性良好、直径~16 nm 的 TiO 2 纳米                     [12]  FENG X J, SHANHAR K, VARGHESE O K, et al. Vertically aligned
            纤维,焙烧后得到高结晶度的锐钛矿 TiO 2 。结晶度                            single crystal  TiO 2  nanowire  arrays grown directly on transparent
                                                                   conducting oxide coated glass: Synthesis details and applications[J].
            高的纳米纤维更利于光生电子的迁移,减慢了电子-                                Nano Letters, 2008, 11: 3781-3786.
            空穴对的复合速率,降低了荧光强度。在光催化还                             [13]  WU J M, TANG M L. Hydrothermal growth of  nanometer-to
            原 CO 2 反应中,TiO 2 纤维表面负载的 CuO 及凝胶中                      micrometer-size anatase single crystals with exposed (001) facets and
                                                                   their ability to assist photodegradation of rhodamine B in water[J].
            的 CuO 都能将激发电子转移到 TiO 2 导带上,提高                          Journal of Hazardous Materials, 2011, 190(1/2/3): 566-573.
            光生载流子的数量,在没有牺牲剂存在下进行光催                             [14]  ZHANG H M, WANG Y, LIU P R, et al. Anatase TiO 2 crystal facet
                                                                   growth: Mechanistic role of hydrofluoric acid and photoelectrocatalytic
            化反应,甲醇产率提高到 1589.0  μmol/g-cat。为进
                                                                   activity[J]. ACS Applied Materials & Interfaces, 2011, 3: 2472-2478.
            一步改善催化剂的性能,后续拟通过调节气凝胶中                             [15]  BI Y T (毕于铁), REN H B (任洪波), ZHANG Q J (张庆军), et al.
            CuO 含量与 TiO 2 表面 CuO 负载量,进一步探讨 CuO                     Synthesis and characterization of copper-based aerogel[J].  Atomic
                                                                   Energy Science  and Technology (原子能科学技术), 2012, 46(11):
            对 TiO 2 光催化性能的影响。                                      1292-1295.
                                                               [16]  ABDULLAH H, KHAN M R, PUDUKUDY M, et al. CeO 2-TiO 2 as
            参考文献:                                                  a visible light active catalyst for the photoreduction  of CO 2 to

            [1]   ODHIAMBO V O, ONGARBAYEVA A, KERI O, et al.Synthesis of   methanol[J]. Journal of Rare Earths, 2015, 33(11): 1155-1161.
                 TiO 2/WO 3  composite nanofibers by a water-based electrospinning   [17]  LI Y Y, FENG X, LI Z H.Visible-light-initiated sonogashira coupling
                 process and their application in photocatalysis[J]. Nanomaterials (Basel),   reactions over CuO/TiO 2 nanocomposites[J]. Catalysis  Science  &
                 2020, 10: 882-893.                                Technology, 2019, 9(2): 377-383.
            [2]   SHUANG S, LV R T, CUI X Y, et al. Efficient photocatalysis with   [18]  XIAO S (肖洒), TAN H (谈恒), WU S N (吴珊妮), et al. Preparation
                 graphene oxide/Ag/Ag 2S-TiO 2 nanocomposites  under visible  light   of CuO/Er-Yb-TiO 2 and catalytic synthesis of methanol from CO 2
                 irradiation[J]. RSC Advances, 2018, 8(11): 5784-5791.   under simulated visible-light[J]. Materials Review (材料导报), 2020,
            [3]   FANG B Z, XING Y L, BONAKDARPOUR A, et al. Hierarchical   3(1): 2005-2009.
                 CuO-TiO 2 hollow microspheres for highly efficient photodriven reduction   [19] TAN H (谈恒), XIAO S (肖洒), YAO S R (姚淑荣), et al. Visible
                 of CO 2 to CH 4[J]. ACS Sustainable Chemistry & Engineering, 2015,   light driven reduction of CO 2 to methanol over CuO/TiO 2 nanofibers[J].
                 3(10): 2381-2388.                                 Fine Chemicals (精细化工), 2019, 36(6): 1210-1216.
            [4]   MOHD A M A, MUHD J N, AMIR M N I, et al. Effect on different   [20]  JI J Y, HE H Q, CHEN C, et al. Biomimetic hierarchical TiO 2@CuO
                 TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: A   nanowire arrays-coated copper meshes with superwetting and self-
                 review[J]. International Journal  of  Environmental Science and   cleaning properties for efficient oil/water separation[J]. ACS Sustainable
                 Technology, 2018, 16: 547-566.                    Chemistry & Engineering, 2018, 7(2): 2569-2577.
            [5]   KAVIL Y N, SHABAN Y A, FARAWATI A R K, et al. Photocatalytic   [21]  JIN J, HE T. Facile synthesis of Bi 2S 3 nanoribbons for photocatalytic
                 conversion of CO 2 into methanol over Cu-C/TiO 2 nanoparticles   reduction of CO 2 into CH 3OH[J]. Applied Surface Science, 2017,
                 under UV light and natural sunlight[J]. Journal of  Photochemistry   394: 364-370.
                 and Photobiology A: Chemistry, 2017, 347: 244-253.   [22]  SONG W J,  YOSHITAKE M.  A work function study of ultra-thin
            [6]   ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of   alumina formation on NiAl(110) surface[J]. Applied Surface Science,
                 the morphology of 1D TiO 2 nanostructures on photogeneration of   2005, 251(1/2/3/4): 14-18.
                 reactive oxygen species and  enhanced photocatalytic  activity[J].   [23]  LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for
                 Journal of Molecular Liquids, 2019, 281: 59-69.   stable visible water splitting via a two-electron pathway[J]. Science,
            [7]   HU L M (胡黎明), YAN J T (闫俊涛), WANG C L (王春蕾), et al.   2015, 347(6225): 970-974.
                 Direct electrospinning method  for the construction of  Z-scheme   [24]  ABDULLAH H, KHAN R M, PUDUKUDY M, et al. CeO 2-TiO 2 as
                 TiO 2/g-C 3N 4/RGO ternary heterojunction photocatalysts with remarkably   a visible light active catalyst for the photoreduction  of CO 2 to
                 ameliorated photocatalytic performance[J]. Chinese Journal of Catalysis   methanol[J]. Journal of Rare Earths, 2015, 33: 1155-1161.
                                                                                                    3+
                 (催化学报), 2019, 40(3): 458-469.                 [25]  CHEN X Y, YE X Z, HE J X, et al. Preparation of Fe -doped TiO 2
            [8]   HE  G Y,  ZHANG J H, HU Y, et al.  Dual-template synthesis of   aerogels for photocatalytic reduction of CO 2 to methanol[J]. Journal
                 mesoporous TiO 2 nanotubes with structure-enhanced functional   of Sol-Gel Science and Technology, 2020, 95(2): 353-359.
                 photocatalytic  performance[J]. Applied Catalysis B: Environmental,   [26]  ALBO J, QADIR  M I, SAMPERI M,  et al. Use of an  optofluidic
                 2019, 250: 301-312.                               microreactor and Cu nanoparticles synthesized in  ionic liquid and
            [9]   XU F Y, ZHANG J T, ZHU B C, et al. CuInS 2 sensitized TiO 2 hybrid   embedded in TiO 2 for an efficient photoreduction of CO 2 to methanol[J].
                 nanofibers for improved photocatalytic CO 2 reduction[J]. Applied   Chemical Engineering Journal, 2021, 404: 126643-126654.
                 Catalysis B: Environmental, 2018, 230(1): 194-202.   [27]  GUSAIN R, KUMAR P, SHARMA  O P,  et al.  Reduced graphene
            [10]  QIAN R F, ZONG H X, SCHNEIDER J,  et al.Charge carrier   oxide-CuO nanocomposites for  photocatalytic  conversion of CO 2
                 trapping,  recombination  and transfer during  TiO 2 photocatalysis: An   into methanol under visible light irradiation[J]. Applied Catalysis B:
                 overview[J]. Catalysis Today, 2019, 335: 78-90.   Environmental, 2016, 181: 352-362.
   128   129   130   131   132   133   134   135   136   137   138