Page 120 - 《精细化工》2021年第6期
P. 120
·1182· 精细化工 FINE CHEMICALS 第 38 卷
总体来说,MOF-808@PAN 纳米纤维膜性质比 organic frameworks[J]. Coordination Chemistry Reviews, 2016, 346:
较稳定,仍能对 CEES 保持较高降解率,仍可继续用 101-111.
[11] JAVIER A A, BANDOSZ T J. Visible light enhanced removal of a
于 CEES 的催化降解反应。其可应用于纳米纤维防护 sulfur mustard gas surrogate from a vapor phase on novel hydrous
服和面罩领域,为芥子气的降解提供另一解决思路。 ferric oxide/graphite oxide composites[J]. Journal of Materials
Chemistry A, 2014, 3: 220-231.
[12] ZHANG B N (张博宁), KONG L C (孔令策), XU W C (许文彩),
3 结论 et al. Research progress in the degradation of mustard gas by metal-
based disinfection materials[J]. Fine Chemicals (精细化工), 2020,
通过静电纺丝技术成功合成了 MOF-808@PAN 37(11): 2223-2228, 2237.
纳米纤维膜,有效防止了 MOF-808 粉末团聚,克服 [13] LEE D T, ZHAO J J, OLDHAM C, et al. UiO-66-NH 2 MOF
nucleation on TiO 2, ZnO, and Al 2O 3 ALD-treated polymer fibers:
了其不易回收的难题。MOF-808@PAN 纳米纤维膜 Role of metal oxide on MOF growth and catalytic hydrolysis of
对 CEES 具有较好的降解效果,使用 3 次后,仍保 chemical warfare agent simulants[J]. ACS Applied Materials &
Interfaces, 2017, 9(51): 44847-44855.
持稳定的结构。MOF-808@PAN 纳米纤维膜的最佳 [14] MAUTSCHKE H H, DRACHE F, SENKOVSKA I, et al. Catalytic
调节剂 TFA 含量为 33.3%,反应温度 100 ℃及反应 properties of pristine and defect-engineered Zr-MOF-808 metal
时间为 12 h。5 μL CEES 在 MOF-808@PAN 纳米纤 organic frameworks[J]. Catalysis Science & Technology, 2018,
8(14): 3610.
维膜(40 mg)上暴露 20 h 后,CEES 的降解率可达 [15] MA K K, IDREES K B, SON F A, et al. Fiber composites of metal-
到 83.7%。 organic frameworks[J]. Chemistry of Materials, 2020, 32(17):
7120-7140.
推测了可能的降解机理:CEES 分子通过 S、 [16] KUMAR V, ANSLYN E V. A selective and sensitive chromogenic
Cl 原子与复合材料上 O 基团产生氢键,而被吸附到 and fluorogenic detection of a sulfur mustard simulant[J]. Chemical
4+
MOF-808@PAN 纳米纤维膜上,随后受到 Zr 的攻 Science, 2013, 4(11): 4292-4297.
[17] DIRING S, FURUKAWA S, TAKSASHIMA Y, et al. Controlled
击,使 C—Cl 键断裂发生水解得到无毒产物乙基 2- multiscale synthesis of porous coordination polymer in nano/micro
羟乙基硫醚;还可能为 CEES 末端的 Cl 和 H 的消除 regimes[J]. Chemistry of Materials, 2010, 22(16): 4531-4538.
[18] SHEARER G C, CHAVAN S, BORDIGA S, et al. Defect engineering:
形成化合物乙基乙烯基硫醚,从而将 CEES 降解为 Tuning the porosity and composition of the metal-organic framework
无毒产物。 UiO-66 via modulated synthesis[J]. Chemistry of Materials, 2016,
28(11): 3749-3761.
参考文献: [19] WU H, CHUA Y S, KRUNGLEVICIUTE V, et al. Unusual and highly
tunable missing-linker defects in zirconium metal-organic framework
[1] KEHE K, BALSZUWEIT F, STENINRITZ D, et al. Molecular
UiO-66 and their important effects on gas adsorption[J]. Journal of
toxicology of sulfur mustard-induced cutaneous inflammation and
the American Chemical Society, 2013, 135: 10525-10532.
blistering[J]. Toxicology, 2009, 263(1): 12-19.
[20] EFOME J, RANA D, MATSUURA T, et al. Insight studies on metal-
[2] SZINICZ L. History of chemical and biological warfare agents[J].
organic framework nanofibrous membrane adsorption and activation
Toxicology, 2005, 214(3): 167-181. for heavy metal ions removal from aqueous solution[J]. ACS Applied
[3] LIANG H X, YAO A N, JIAO X L, et al. Fast and sustained Materials & Interfaces, 2018, 10(22): 18619-18629.
degradation of chemical warfare agent simulants using flexible self- [21] MONDLOCH J E, KATZ M J, ISLEY W C, et al. Destruction of
supported metal-organic-framework filters[J]. ACS Applied Materials chemical warfare agents using metal-organic frameworks[J]. Nature
& Interfaces, 2018, 10(24): 20396-20403. Materials, 2015, 14: 512-516.
[4] PRASAD G K, SINGH B. Reactions of sulphur mustard on impregnated [22] SANA J, KOUSHKBAGI S, HOSSEINI S, et al. Incorporation of UiO-
carbons[J]. Journal of Hazardous Materials, 2004, 116(3): 213-217. 66-NH 2 MOF into the PAN/chitosan nanofibers for adsorption and
[5] ZHAO S Y, CHEN Z Y, WEI N, et al. Highly efficient cooperative membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous
catalysis of single-site Lewis acid and Brønsted acid in a metal- solutions[J]. Journal of Hazardous Materials, 2019, 368: 10-20.
organic framework for the biginelli reaction[J]. Inorganic Chemistry, [23] FANG S Y, ZANG P, GONG J L, et al. Construction of highly water-
2019, 58(12): 7657-7661. stable metal-organic framework UiO-66 thin-film composite membrane
[6] ZHOU Y Y, GAO Q, ZHANG L J, et al. Combining two into one: A for dyes and antibiotics separation[J]. Chemical Engineering Journal,
dual-function H 5PV 2Mo 10O 40@MOF-808 composite as a versatile 2020, 385: 123400.
decontaminant for sulfur mustard and soman[J]. Inorganic Chemistry, [24] SUVENDU S M, HANS J H. Breaking down chemical weapons by
2020, 59: 11595-11605. metal-organic frameworks[J]. Angewandte Chemie, 2016, 55(1):
[7] VELLINGIRI K, PHILIP L, KIM K H. Metal-organic frameworks as 42-44.
media for the catalytic degradation of chemical warfare agents[J]. [25] TAYLOR C G P, PIPER J R, WARD M D. Binding of chemical
Coordination Chemistry Reviews, 2017, 353: 159-179. warfare agent simulants as guests in a coordination cage: Contributions
[8] LIU L, PING E, SUN J M, et al. Multifunctional Ag@MOF- to binding and a fluorescence-based response[J]. Chemical
5@chitosan non-woven cloth composites for sulfur mustard Communications, 2016, 52: 6225-6228.
decontamination and hemostasis[J]. Dalton Transactions, 2019, 48: [26] YAN Z M, WU M, HU B Q, et al. Electrospun UiO-66/
6951-6959. polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid
[9] LI H L, EDDAOUDI M M, O'KEEFFE M, et al. Design and synthesis phase extraction of phytohormones in vegetable samples[J]. Journal
of an exceptionally stable and highly porous metal-organic framework[J]. of Chromatography A, 2018, 1542: 19-27.
Nature, 1999, 402: 276-279. [27] XU J, LIU J, LI Z, et al. Synthesis, structure and properties of
[10] LIU Y Y, HOWARTH A J, VERMEULEN N A, et al. Catalytic Pd@MOF-808[J]. Journal of Materials Science, 2019, 54: 12911-
degradation of chemical warfare agents and their simulants by metal- 12924.