Page 109 - 《精细化工》2021年第8期
P. 109

第 8 期                  李   酽,等: Au 修饰纳米 ZnO 的超声化学法制备及光催化性能                              ·1603·


            物光催化性能良好,在大规模合成结构稳定、性能                                 p-nitrophenol[J]. Journal of Sol-Gel Science and Technology, 2020,
                                                                   94(2): 468-476.
            良好的纳米复合材料等方面具有很好的应用前景。
                                                               [17]  XIE Y S, ZHANG N, TANG Z R, et al. Tip-grafted Ag-ZnO nanorod
            除此之外,本文得到的 Au/ZnO 纳米复合物在处理                             arrays decorated  with Au clusters for enhanced photocatalysis[J].
            被有机物污染的废水方面具有很好的应用价值。                                  Catalysis Today, 2020, 340: 121-127.
                                                               [18]  MURCIA J J, ARIAS J G, ROJAS H,  et al.  Photocatalytic
                                                                   degradation of phenol, catechol and hydroquinone over Au-ZnO
            参考文献:                                                  nanomaterials[J].  Revista Facultad de Ingeniería Universidad de
            [1]   GAO Y, XU B T,  CHERIF  M,  et al. Atomic insights for Ag   Antioquia, 2020, (94): 24-32.
                 interstitial/substitutional doping into ZnIn 2S 4 nanoplates and intimate   [19]  XIE B W, DONG J, ZHAO J M,  et al. Radiative  properties of
                 coupling with reduced graphene oxide for enhanced photocatalytic   hedgehog-like ZnO-Au composite particles with applications to
                 hydrogen production by water splitting[J]. Applied Catalysis B:   photocatalysis[J]. Journal of Quantitative Spectroscopy & Radiative
                 Environmental, 2020, 279: 119403.                 Transfer, 2018, 217: 1-12.
            [2]   WANG P L,  LI X Y, FAN S Y,  et al. Impact of oxygen vacancy   [20]  CHENG Y F, JIAO W L, LI Q Q,  et al. Two hybrid Au-ZnO
                 occupancy on piezo-catalytic activity of BaTiO 3 nanobelt[J]. Applied   aggregates with different hierarchical structures: A comparable study
                 Catalysis B: Environmental, 2020, 279: 119340.    in photocatalysis[J]. Journal of Colloid and Interface Science, 2018,
            [3]   HUANG W, YU Q M, WANG Y Y, et al. Preparation of magnetic   509: 58-67.
                 Ni 0.5Zn 0.5Fe 2O 4/ZnO nanocomposites and their  photocatalytic   [21]  WU S, CHEN Z  W, WANG T,  et al.  A facile approach for the
                 performances for methylene blue in aqueous solution[J]. Journal of   fabrication of Au/ZnO-hollow-sphere-monolayer thin films and their
                 Nanoscience and Nanotechnology, 2020, 20(12): 7506-7515.   photocatalytic properties[J]. Applied  Surface Science, 2017, 412:
            [4]   CHO  Y S, LEE  Y H, PARK J  K,  et al. Fabrication of silica   69-76.
                 microspheres containing TiO 2 or aluminum zinc oxide nanoparticles   [22]  KRISHNAN A, VISHWANATHAN P V, MOHAN A C, et al. Tuning
                 via self-assembly:  Application in water purification[J]. Journal of   of photocatalytic performance of CeO 2-Fe 2O 3 composite by
                 Nanoscience and Nanotechnology, 2020, 20(11): 6738-6746.   Sn-doping for the effective degradation of Methlene Blue (MB) and
            [5]   ZOU Z J, TAN T, LIAO G H, et al. UV light driven photoelectric   Methyl Orange (MO) dyes[J]. Surfaces and Interfaces,  2021, 22:
                 properties of ZnO film to humidity[J]. Journal of Nanoscience  and   100808.
                 Nanotechnology, 2020, 20(12): 7516-7521.      [23]  SONG X L, ZHANG X,  YANG P.  In situ growth of small  Au
            [6]   PARK S, PARK  G, BYUN K,  et al.  Utilization  of zinc oxide   nanoparticles on ZnO nanorods  in situ  via  ultrasonic irradiation
                                             +
                 nanopowder for photocatalytic  removal  of Pb  ions from aqueous   toward supper-enhanced catalysis activity[J]. RSC Advances, 2016,
                 wastewater[J]. Journal of Nanoscience and Nanotechnology, 2020,   6(107): 107433 -107441.
                 20(11): 6831-6834.                            [24]  ZHANG  X P, JIANG W Q, GONG X L,  et al.  Sonochemical
            [7]   PARK S, HAN S, KIM J H, et al. Immobilization of photocatalytic   synthesis and characterization of magnetic separable  Fe 3O 4/Ag
                 ZnO nanopowders using anodized nanoporous alumina substrates[J].   composites and its catalytic properties[J]. Journal of Alloys and
                 Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6850-6854.     Compounds, 2010, 508: 400-405.
            [8]   AL A  N, QAHTAN T F, GONDAL M A, et al. Laser-assisted   [25]  SEIFIKAR M, MASOUD C, BJORN P, et al. Direct observation of
                 synthesis of ZnO/ZnSe hybrid nanostructured films for enhanced   spontaneous polarization induced electron charge transfer in stressed
                 solar-light induced water splitting and water decontamination[J].   ZnO nanorods[J]. Nano Energy, 2018, 43: 376-382.
                 International Journal of Hydrogen Energy, 2020, 45(43): 22938-   [26]  LUO M S (罗明生),  FENG X L (冯旭楞), SONG D (宋丹), et al.
                 22949.                                            Effect of preparation methods on Fischer-Tropsch iron catalysts
            [9]   CHEN J Y, WU  M C,  TING  Y H, et al. Applications of  p-n   using FeC 2O 4[J]. Chemical Industry and Engineering Progress (化工
                 homojunction ZnO nanowires to one-diode one-memristor RRAM   进展), 2020, 39(6): 2422-2429.
                 arrays[J]. Scripta Materialia, 2020, 187: 439-444.   [27]  POMONIS P J, PETRAKIS D E, LADAVOS A K, et al. The I-point
            [10]  ABDULRAHMAN A F.  The  effect of different substrate-inclined   method for estimating the surface area of solid catalysts and the
                 angles on the characteristic properties of ZnO  nanorods for UV   variation of C-term of the BET equation[J]. Catalysis Communications,
                 photodetectors  applications[J]. Journal of Materials Science-Materials   2005, 6(1): 93-96.
                 in Electronics, 2020, 31(17): 14357-14374.     [28]  YEN S C, CHEN  Y  L, SU  Y H. Materials genome  evolution of
            [11]  LONG J, WANG W Z, FU S Y, et al. Hierarchical architectures of   surface plasmon resonance characteristics of Au nanoparticles
                 wrinkle-like ZnFe 2O 4 nanosheet-enwrapped ZnO nanotube arrays for   decorated ZnO nanorods[J]. Apl Materials, 2020, 8(9): 091109.
                 remarkably photoelectrochemical water splitting to produce hydrogen[J].   [29]  CHANDRASEKAR L B, GNANESWARI M D, KARUNAKARAN
                 Journal of Colloid and Interface Science, 2019, 536: 408-413.     M. Synthesis, characterization and anti-bacterial activity of Mg and
            [12]  YEGANEL M, MADDAHI P S,  BAGHSIYAHI F  B. A density   Ba-doped ZnO nanoparticles[J]. Journal  of Materials Science:
                 functional  study on the sensitivity of small ZnO nanoclusters to   Materials in Electronics, 2020, 31(22): 20270-20276.
                 sulfamethazine considering semilocal and nonlocal functionals[J].   [30]  SHE P,  XU K L, YIN S Y,  et al. Bioinspired self-standing
                 Journal of Electronic Materials, 2020, 49(2): 1273-1281.     macroporous Au/ZnO sponges for  enhanced photocatalysis[J].
            [13]  HU W Y, ZHANG Q P, LUO  K Y,  et al. Enhanced photocatalytic   Journal of Colloid and Interface Science, 2018, 514: 40-48.
                 properties  of CuO-ZnO nanocomposites by decoration with Ag   [31]  SHE P, YIN S  Y, HE  Q  R,  et al.  A self-standing macroporous
                 nanoparticles[J]. Ceramics International, 2020, 46(15): 24753 -24757.     Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis
            [14]  JYOTHI N S, RAVICHANDRAN K. Optimum pH for effective dye   and photocurrent generation[J]. Electrochimica Acta, 2017, 246: 35-42.
                 degradation: Mo, Mn, Co and Cu doped ZnO photocatalysts in thin   [32]  KHAN R, UTHIRALUMRAR P,  KIM  T H,  et al. Enhanced
                 film form[J]. Ceramics International, 2020, 46(14): 23289 -23292.     photocurrent performance of partially decorated Au nanoparticles on
            [15]  AL A  N, QAHTAN T F, GONDAL M A,  et al. Laser-assisted   ZnO nanorods based UV photodetector[J]. Materials Research
                 synthesis of ZnO/ZnSe hybrid nanostructured films for enhanced   Bulletin, 2019, 115: 176-181.
                 solar-light induced water splitting and water decontamination[J].   [33]  PHURUANGRAT A, PRAPASSORNWATTANA P, THONGTEM S,
                 Interbational of Journal of Hydrogen Energy, 2020, 45(43): 22938-   et al.  Synthesis  of heterostructure Au/ZnO nanocomposites by
                 22949.                                            microwave-assisted deposition method and their  photocatalytic
            [16]  BAI L, MEI J X. Low amount of Au nanoparticles deposited ZnO   activity in methylene blue degradation[J]. Russian Journal of
                 nanorods heterojunction photocatalysts for efficient degradation of   Physical Chemistry A, 2020, 94(7): 1464-1470.
   104   105   106   107   108   109   110   111   112   113   114