Page 165 - 《精细化工》2021年第8期
P. 165
第 8 期 陈茹茹,等: 仿生黏附性聚多巴胺丁香酚抑菌微胶囊的制备 ·1659·
10(1): 15532-15541. and photothermal therapy on cancer cells with polydopamine adriamycin
[17] HASHEMINEJAD N, KHODAIYAN F, SAFRI M. Improving the nanoparticles[J]. Chemical Journal of Chinese Universities (高等学
antifungal activity of clove essential oil encapsulated by chitosan 校化学学报), 2015, 36(7): 1389-1394.
nanoparticles[J]. Food Chemistry, 2019, 275: 113-122. [27] YANG Z J, CUI Q Y, AN R, et al. Comparison of microbiomes in
2
[18] AI K L, LIU Y L, RUAN C P, et al. Sp C-dominant N-doped carbon ulcerative and normal mucosa of recurrent aphthous stomatitis
sub- micrometer spheres with a tunable size: A versatile platform for (RAS)-affected patients[J]. BMC Oral Health, 2020, 20(1): 128.
highly efficient oxygen-reduction catalysts[J]. Advanced Materials, [28] LIU Z J (刘志军), FAN W H (范文华), DONG C (董超), et al.
2013, 25(7): 998-1003. Production of microcapsules loaded with quercetin by supercritical
[19] LEE H, SCHERER N F, MESSERSMITH P B. Single-molecule fluid extraction of emulsions[J]. Fine Chemicals (精细化工), 2018,
mechanics of mussel adhesion[J]. Proceedings of the National Academy 35(12): 1981-1986.
of Sciences of the United States of America, 2006, 103(35): 12999- [29] MENG X J (孟祥俭), GUO X W (郭小炜), LI Y Y (李玉妍), et al.
13003. Construction and sustained release bacteriostasis of potassium
[20] LIU R, GUO Y H, ODVSOTE G, et al. Core-shell Fe 3O 4 polydopamine diformate microcapsules[J]. Fine Chemicals (精细化工), 2019,
nanoparticles serve multipurpose as drug carrier, catalyst support and 36(11): 2252-2257.
carbon adsorbent[J]. ACS Applied Materials & Interfaces, 2013, [30] JIA X, SHENG W B, LI W, et al. Adhesive polydopamine coated
5(18): 9167-9171. avermectin microcapsules for prolonging foliar pesticide retention[J].
[21] CHUN K, CHOI C, ELAINE Y T, et al. Dopamine-mediated assembly ACS Applied Materials & Interfaces, 2014, 6(22): 19552-19558.
of citrate-capped plasmonic nanoparticles into stable core-shell [31] DERAFSHI R, BAZARGANI A, GHAPANCHI J, et al. Isolation
nanoworms for intracellular applications[J]. ACS Nano, 2019, 13(5): and identification of nonoral pathogenic bacteria in the oral cavity of
5864-5884. patients with removable dentures[J]. Journal of International Society
[22] AMIN D R, HIGGINSON C J, KORPUSIK A B, et al. Untemplated of Preventive & Community Dentistry, 2017, 7(4): 197-201.
resveratrol-mediated polydopamine nanocapsule formation[J]. ACS [32] ZHANG S S (张珊珊). Prepartion of thyme microcapsule with emulsion
Applied Materials and Interfaces, 2018, 10(40): 34792-34801. templates by layer by layer self-assembly method and its controlled
[23] WANG Z M, CHEN L, XU J L, et al. Bioadhesive microporous release and antibacterial effect research[D]. Wuhan: Huazhong
architectures by self-assembling polydopamine microcapsules for University of Agricultural University (华中农业大学), 2018.
biomedical applications[J]. Chemistry of Materials, 2015, 27(3): 848- [33] WU J (吴京), WANG X F (王先锋), XUE D (薛东), et al. Preparation
856. and properties of PDA-coated photothermal phase change
[24] POINARD B, NEO S, YEO E L, et al. Polydopamine nanoparticles microcapsules[J]. Fine Chemicals (精细化工), 2021, 38(3): 489-495.
enhance drug release for combined photodynamic and photothermal [34] SHAO Y, WU C H, WU T T, et al. Eugenol-chitosan nanoemulsions
therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(25): by ultrasound-mediated emulsification: Formulation, characterization
21125-21136. and antimicrobial activity[J]. Carbohydrate Polymers, 2018, 193:
[25] IQBAL Z, LAI E P C, AVIS T J, et al. Antimicrobial effect of 144-152.
polydopamine coating on Escherichia coli[J]. Journal of Materials [35] KARKHANECHI H, TAKAGI R, MATSUYAMA H. Biofouling
Chemistry, 2012, 22(40): 21608-21612. resistance of reverse osmosis membrane modified with polydopamine
[26] LIU Y W (刘宇炜), GUO Z (郭卓). Synergistic effect of chemotherapy [J]. Desalination, 336: 87-96.
(上接第 1649 页) catalysts. Asymmetric epoxidation of cis-olefins and terminal
olefins[J]. The Journal of Organic Chemistry, 2002, 67: 2435-2446.
[12] LI Q (李琦), YE Y H (叶蕴华), YAN A X (闫爱新), et al. Isolation, [23] MAO G X, WANG Y, QIU Q, et al. Salidroside protects human
identification and physiological activities of 2-(1′,2′,3′,4′- fibroblast cells from premature senescence induced by H 2O 2 partly
tetrahydroxybutyl)-6-(2″,3″,4″-trihydroxybutyl)-pyrazine from through modulating oxidative status[J]. Mechanisms of Ageing and
panaxnotoginseng[J]. Chemical Journal of Chinese Universities (高 Development, 2010, 131: 723-731.
等学校化学学报), 2001, 22, 1824-1828. [24] NAKAMICHI N, KAWASHITA Y, HAYASHI M. Oxidative
[13] TANG B Q (唐本钦), YANG T T (杨婷婷), YANG W Q (杨文强), et aromatization of 1, 3, 5-trisubstituted pyrazolines and Hantzsch 1,
al. Chemical constituents in leaves of Morus atropurpurea and their 4-dihydropyridines by Pd/C in acetic acid[J]. Organic Letters, 2002,
α-glucosidase activity[J]. Chinese Traditional and Herbal Drugs (中 4(22): 3955-3957.
草药), 2013, 44(22): 3109-3113. [25] TAHA M I. The reaction of 2-amino-2-deoxy-D-glucose hydrochloride
[14] BHATTACHERJEE A, HRYNETS Y, BETTI M. Transport of the with aqueous ammonia[J]. Journal of the Chemical Society (Resumed),
glucosamine-derived browning product fructosazine 1961, 2468-2472.
(polyhydroxyalkylpyrazine) across the human intestinal caco-2 cell [26] LIU P F, ZHANG J J, QIAO Y, et al. Amino acid ionic liquids
monolayer: Role of the hexose transporters[J]. Journal of Agricultural catalyzed D-glucosamine into pyrazine derivatives: Insight from
& Food Chemistry, 2017, 65(23): 4642-4650. NMR spectroscopy[J]. Journal of Agricultural and Food Chemistry,
[15] FUJII S, KIKUCHI R, KUSHIDA H. Formation of fructosazine[J]. 2021, 69(8): 2403-2411.
Journal of Organic Chemistry, 1966, 31(7): 2439-2241. [27] BYUN H O, LEE Y K, KIM J M, et al. From cell senescence to
[16] SUMOTO K, IRIE M, MIBU N, et al. Formation of pyrazine age-related diseases: Differential mechanisms of action of senescence-
derivatives from D-glucosamine and their deoxyribonucleic acid associated secretory phenotypes[J]. Bmb Reports, 2015, 48(10):
(DNA) strand breakage activity[J]. Chemical & Pharmaceutical 549-558.
Bulletin, 1991, 39(3): 792-794. [28] ARUNACHALAM G, SAMUEL M, MAREI I, et al. Metformin
[17] ROHOVEC J, KOTEK J, PETERS J, et al. A clean conversion of modulates hyperglycaemia induced endothelial senescence and
D-glucosamine hydrochloride to a pyrazine in the presence of apoptosis through SIRT1[J]. British Journal of Pharmacology, 2013,
phenylboronate or borate[J]. European Journal of Organic Chemistry, 171: 523-535.
2001, 2001(20): 3899-3901. [29] HAN B A (韩宝爱). Effect and mechanism of metformin on delaying
[18] JIA L Y, WANG Y X, QIAO Y, et al. Efficient one-pot synthesis of aging in D-galactose induced PC12 cell senescence model[D].
deoxyfructosazine and fructosazine from D-glucosamine hydrochloride Wuhan: Huazhong University of Science and Technology (华中科技
using a basic ionic liquid as a dual solvent-catalyst[J]. RSC Advances, 大学), 2019.
2014, 4(83): 44253-44260. [30] TANG Y H, XU J, Q W, et al. Resveratrol reduces vascular cell
[19] HOU X L (侯相林), JIA L Y (贾玲玉), WANG Y X (王英雄), et al. senescence through attenuation of oxidative stress by SIRT1/NADPH
A method for preparing fructosazine by using chitin biomass: oxidase-dependent mechanisms[J]. Journal of Nutritional Biochemistry,
CN105348205A[P]. 2016-02-24. 2012, 23(11): 1410-1416.
[20] WANG M F (汪美凤). Green catalysis for glycosides and investigation [31] KAO C L, CHEN L K, CHANG Y L, et al. Resveratrol protects
on biodegradation rate of modified lignin[D]. Guangzhou: Jinan human endothelium from H 2O 2[J]. Journal of Atherosclerosis &
University (暨南大学), 2019. Thrombosis, 2010, 17(9): 970-979.
[21] LÓPEZOTÍN C, BLASCO M A, PARTRIDGE L, et al. The [32] RAMIRO I B, VYOMESH P, ANA C, et al. mTOR inhibition
hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217. prevents epithelial stem cell senescence and protects from radiation-
[22] TIAN H Q, SHE X G, YU H W, et al. Designing new chiral ketone induced mucositis[J]. Cell Stem Cell, 2012, 11(3): 401-414.