Page 167 - 《精细化工》2022年第1期
P. 167

第 1 期                     马天怡,等: L-精氨酸/L-赖氨酸改性大豆分离蛋白乳化性                                  ·157·


            而 pH 对照组中油滴分布不均匀,且排列紧密,有                           [10]  JIANG J, CHEN J, XIONG Y L. Structural and emulsifying
                                                                   properties of soy  protein isolate subjected to acid and alkaline
            可能发生了油滴聚集现象。CLSM 的结果与图 6B                              pH-shifting processes[J]. Journal of Agricultural and Food
            中稳定性结果一致。                                              Chemistry, 2009, 57(16): 7576-7583.
                                                               [11]  WANG  Y S, LIU C  Q, MA  T Y,  et al. Physicochemical  and
                                                                   functional properties of γ-aminobutyric acid-treated soy proteins[J].
            3   结论                                                 Food Chemistry, 2019, 295: 267-273.
                                                               [12]  GORNALL A G, BARDAWILL C J, DAVID M M. Determination of
                 采用两种质量浓度均为 1、3 g/L 的 L-Arg、L-Lys                  serum proteins  by  means of the biuret reaction[J]. Journal of
                                                                   Biological Chemistry, 1949, 177(2): 751-766.
            分别改性 SPI,系统研究了这两种氨基酸对 SPI 结
                                                               [13]  JIANG J, XIONG Y  L,  CHEN J.  pH Shifting alters solubility
            构、物理化学性质及溶解性、乳化性的影响。主要                                 characteristics and thermal stability of soy protein isolate and its
                                                                   globulin fractions in different pH, salt concentration, and temperature
            结论如下:
                                                                   conditions[J]. Journal of Agricultural and Food Chemistry, 2010,
                (1)L-Arg、L-Lys 均能有效地提高 SPI 的溶解                     58(13): 8035-8042.
                                                               [14]  WANG Y S, XIONG  Y  L, RENTFROW G K,  et al. Oxidation
            性,这为 SPI 基于溶解度的功能性提升提供了基础。
                                                                   promotes cross-linking but impairs film-forming properties of whey
                (2)L-Arg、L-Lys 加入 SPI 溶液中,通过改变                     proteins[J]. Journal of Food Engineering, 2013, 115(1):11-19.
            溶液 pH 及与蛋白之间非共价相互作用,进而促进                           [15]  ZHANG W W, LIU C Q, ZHAO J, et al. Modification of structure
                                                                   and functionalities of ginkgo seed proteins by pH-shifting
            SPI 疏水性基团(比如:Trp 残基)折叠;显著降低                            treatment[J]. Food Chemistry, 2021, 358: 129862.
            SPI 在溶液中的粒径大小,并促进蛋白带电量。                            [16]  WANG Y S (王耀松), ZHANG W W (张唯唯), MA T Y (马天怡),
                                                                   et al. Influence of oxidative modification  by malondialdehyde on
                (3)L-Arg、L-Lys 能够显著提高 SPI 乳化活性                     structure and emulsifying properties of walnut protein[J]. Scientia
            和乳化稳定性。                                                Agricultura Sinica (中国农业科学), 2020, 53(16): 3372-3384.
                                                               [17]  WANG  Y S, ZHAO J, ZHANG W W,  et al. Modification of
                (4)L-Arg、L-Lys 对 SPI 结构及功能性的影响                     heat-induced whey protein  gels  by  basic amino acids[J]. Food
            随着浓度增加而增强。总体上来看,L-Arg 比 L-Lys                          Hydrocolloids, 2020, 100: 105397.
                                                               [18]  LAM R S H, NICKERSON M T. Food proteins: A review on their
            更有效地提高 SPI 溶解性和乳化活性。                                   emulsifying properties using a structure-function approach[J]. Food
                 总之,天然碱性氨基酸能够有效提升植物蛋白                              Chemistry, 2013, 141(2): 975-984.
                                                               [19]  WU G  L,  WANG S J, TIAN Z,  et al. Elucidating the weak
            的乳化性。以上研究一方面挖掘了碱性氨基酸的功                                 protein-protein  interaction mechanisms behind  the liquid-liquid
            能性并扩大了它们在食品体系中的应用范围,另一                                 phase separation of a mAb solution by different types of additives[J].
                                                                   European Journal  of Pharmaceutics and Biopharmaceutics, 2017,
            方面为蛋白功能改进提供了一种方法和理论基础。                                 120: 1-8.
                                                               [20]  LI S Y, ZHENG Y D, XU P, et al. L-Lysine and L-arginine inhibit
            参考文献:                                                  myosin aggregation and interact with acidic amino acid residues of
                                                                   myosin: The role in increasing myosin solubility[J]. Food Chemistry,
            [1]   MA T Y (马天怡), ZHANG W W (张唯唯), HE Z D (何振东), et al.   2018, 242: 22-28.
                 Recent advances on basic amino acids modifying functionalities of   [21]  LI S Y, LI L X, ZHU X X, et al. Conformational and charge changes
                 food proteins[J]. Fine Chemicals (精细化工), 2021, 38(2): 294-305.   induced by L-arginine and L-lysine increase the solubility of chicken
            [2]   ARAKAWA T, EJIMA D, TSUMOTO K,  et al. Suppression of   myosin[J]. Food Hydrocolloids, 2019, 89: 330-336.
                 protein interactions by arginine: A proposed mechanism of the   [22]  STÄRTZEL P. Arginine as an excipient for protein freeze-drying: A
                 arginine effects[J]. Biophysical Chemistry, 2007, 127(1/2): 1-8.   mini review[J]. Journal of Pharmaceutical Sciences, 2018, 107(4):
            [3]   CHEN X, ZOU Y F, HAN M Y, et al. Solubilisation of myosin in a   960-967.
                 solution of low ionic strength L-histidine: Significance of the   [23]  HAYES D G, SOLAIMAN D K Y, ASHBY R  D.  Biobased
                 imidazole ring[J]. Food Chemistry, 2016, 196: 42-49.   surfactants: Synthesis, properties, and applications[M]. Cambridge:
            [4]   GUO X Y, PENG Z Q, ZHANG Y  W,  et al. The solubility and   Academic Press and AOCS Press, 2019: 413-445.
                 conformational characteristics of porcine myosin as affected by the   [24]  ARAKAWA T, TSUMOTO K. The effects of arginine on refolding of
                 presence of L-lysine and L-histidine[J]. Food Chemistry, 2015, 170:   aggregated proteins: Not facilitate refolding, but suppress aggregation[J].
                 212-217.                                          Biochemical and Biophysical Research Communications, 2003,
            [5]   LI L X, CHEN L, NING C, et al. L-Arginine and L-lysine improve   304(1): 148-152.
                 the physical stability of soybean oil-myosin emulsions by changing   [25]  BAYNES B M, WANG D I C, TROUT B L. Role of arginine in the
                 penetration and unfolding behaviors of interfacial  myosin[J]. Food   stabilization of proteins against aggregation[J]. Biochemistry, 2005,
                 Hydrocolloids, 2020, 98: 105265.                  44(12): 4919-4925.
            [6]   ZHU  X C,  LI L X, LI  S  Y,  et al. L-Arginine/L-lysine  improves   [26]  LANGE  C, RUDOLPH R. Suppression of protein aggregation by
                 emulsion stability  of chicken  sausage by increasing electrostatic   L-arginine[J]. Current Pharmaceutical Biotechnology, 2009, 10(4): 1-7.
                 repulsion of emulsion droplet and decreasing the interfacial tension   [27]  HU  Y, ARORA J,  JOSHI S B, et al.  Characterization of excipient
                 of soybean oil-water[J]. Food Hydrocolloids, 2019, 89: 492-502.   effects on reversible self-association, backbone flexibility, and solution
            [7]   SINGH P, KUMAR R, SABAPATHY S N,  et al. Functional and   properties  of an IgG1 monoclonal antibody at high concentrations:
                 edible uses of soy protein  products[J]. Comprehensive Reviews in   Part 1[J]. Journal of Pharmaceutical Sciences, 2020, 109: 340-352.
                 Food Science and Food Safety, 2008, 7(1): 14-28.   [28]  GAO R C, SHI T, SUN Q C,  et al. Effects of L-arginine and L-
            [8]   CRAIG R, WOODHEAD J L. Structure and function of myosin   histidine on heat-induced aggregation of fish myosin: Bighead carp
                 filaments[J]. Current Opinion in  Structural Biology, 2006, 16(2):   (Aristichthys nobilis)[J]. Food Chemistry, 2019, 295: 320-326.
                 204-212.                                      [29]  SHUKLA D, TROUT B L. Interaction of arginine with proteins and
            [9]   MU B N,  XU H L, LI W,  et al. Spinnability and  rheological   the mechanism by  which it inhibits aggregation[J].  The Journal of
                 properties  of globular soy protein  solution[J]. Food Hydrocolloids,   Physical Chemistry B, 2010, 114(42): 13426-13438.
                 2019, 90: 443-451.                                                           (下转第 163 页)
   162   163   164   165   166   167   168   169   170   171   172