Page 180 - 《精细化工》2022年第1期
P. 180

·170·                             精细化工   FINE CHEMICALS                                 第 39 卷

            化学性能归因于原位生长在基底上的微小的 3D 花                               Electrochimica Acta, 2019, 299: 281-288.
                                                               [16]  LIU G Q (刘国强). Preparation and electrocatalytic  activities for
            球阵列结构增加了催化剂的电化学活性面积,为
                                                                   oxygen evolution reaction of CoB x/Co 3O 4 catalyst[J]. Chinese
            OER 提供更多的活性位点;同时,Co 9 S 8 和 MoS 2                      Journal of Inogranic Chemistry (无机化学学报), 2021, 37(2):
            协同作用,降低了催化剂与电解液电荷转移阻力,                                 267-275.
                                                               [17]  HUANG Y B, ZHANG M,  LIU P,  et al. Co 3O 4 supported on N,
            利于气液传质,增强了催化剂的活性。本项工作为                                 P-doped carbon as a bifunctional electrocatalyst for oxygen reduction
            一步法构筑高性能过渡金属硫化复合催化剂提供了                                 and evolution reactions[J]. Chinese Journal of Catalysis, 2016, 37(8):
            新的思路和理论参考。                                             1249-1256.
                                                               [18]  GANESAN V, KIM J. Multi-shelled CoS 2-MoS 2 hollow spheres as
                                                                   efficient bifunctional electrocatalysts for overall water splitting[J].
            参考文献:                                                  International Journal of Hydrogen Energy, 2020, 45(24): 13290-13299.
            [1]   CHEN L R (陈丽茹), TAO T X (陶庭先), LU X H (卢晓韩), et al.   [19]  SUN Z Y (孙志裕), CAO S (曹帅), HUANG X Q (黄小琴), et al.
                 Synthesis of CoS 2/AOCF composites by  coordination loading   Preparation of Co 3O 4@NiMn-LDH heterostructured arrays as
                 method and its electrocatalytic hydrogen evolution performace[J].   efficient oxygen evolution electrocatalyst[J]. Chinese Journal of
                 Fine Chemicals (精细化工), 2021, 38(5): 1014-1022.    Inogranic Chemistry (无机化学学报), 2020, 36(10): 1899-1905.
            [2]   PU Z H, AMIINU I S, CHENG R L, et al. Single-atomcatalysts for   [20]  GUO P, WU Y X, LAO W M, et al. CoS nanosheet arrays grown on
                 electrochemical hydrogen evolution reaction:  Recent advances and   nickel foam as an excellent OER catalyst[J]. Journal of Alloys and
                 future perspectives[J]. Nano-Micro Letters, 2020, 12(2): 77-105.   Compounds, 2017, 723: 772-778.
            [3]   JI X Q, MA M,  GE R X, et al. WO 3  nanoarray: An efficient   [21]  ZHOU Y, XI S Q, YANG X G, et al. In situ hydrothermal growth of
                 electrochemical oxygen evolution catalyst electrode operating in   metallic Co 9S 8-Ni 3S 2  nanoarrays on  nickel foam  as bifunctional
                 alkaline solution[J]. Inorganic Chemistry, 2017, 56: 14743-14746.   electrocatalysts for hydrogen and oxygen evolution reactions[J].
            [4]   HOU J G, WU Y Z, ZHANG B, et al. Rational design of nanoarray   Journal of Solid State Chemistry, 2019, 270: 398-406.
                 architectures for  electrocatalytic water splitting[J]. Advanced   [22]  GUO Y N, TANG J, QIAN H Y, et al. One-pot synthesis of zeolitic
                 Functional Materials, 2019, 29(20): 1808367-1808395.   imidazolate  framework  67-derived  hollow  Co 3S 4@MoS 2
            [5]   FENG J X, WU J Q, TONG Y X, et al. Efficient hydrogen evolution   heterostructures as efficient bifunctional catalysts[J]. Chemistry of
                 on Cu  nanodots-decorated Ni 3S 2  nanotubes  by optimizing atomic   Materials, 2017, 29: 5566-5573.
                 hydrogen adsorption and desorption[J]. Journal of the American   [23]  LI  F, LI  J, CAO Z,  et al. MoS 2  quantum dot decorated RGO: A
                 Chemical Society, 2018, 140(2): 610-617.          designed electrocatalyst with high active site density for the
            [6]   WU A P, XIE Y, MA H, et al. Integrating the active OER and HER   hydrogen evolution reaction[J]. Journal of Materials Chemistry A,
                 components as the heterostructures for the efficient overall water   2015, 3: 21772-21778.
                 splitting[J]. Nano Energy, 2018, 44: 353-363.   [24]  RIAZ M S, YUAN X T, ZHAO Y T, et al. Porous NiCo 2S 4/ Co 9S 8
            [7]   WAN K, LUO J S, ZHANG X, et al. In-situ formation of Ni (oxy)   microcubes templated by sacrifcial ZnO spheres as an effcient
                 hydroxide on Ni foam  as an efficient electrocatalyst for oxygen   bifunctional oxygen electrocatalyst[J]. Advanced Sustainable
                 evolution reaction[J]. International Journal of Hydrogen Energy,   Systerms, 2019, 3: 18001673-18001681.
                 2020, 45(15): 8490-8496.                      [25]  BAI J M, MENG T, GUO  D L,  et al. Co 9S 8@MoS 2 core-shell
            [8]   TAN X L  (谭小莉), HE  D H (何灯红), ZHANG  X W (张兴旺).   heterostructures as trifunctional electrocatalysts for  overall water
                 Preparations  and  electrochemical  poperties  of  Co@NC  splitting and Zn-Air batteries[J]. ACS Applied Materials Interfaces,
                 nanocomposites based on ZIF-67[J]. Journal of Electrochemistry (电  2018, 10: 1678-1689.
                 化学), 2019, 25(5): 601-607.                    [26]  ZHU H, ZHANG J F, YAN  R L,  et al. When cubic cobalt sulfide
            [9]   BAO W W, XIAO L,  ZHANG J J,  et al. Interface engineering of   meets layered  molybdenum disulfide: A core-shell system toward
                 NiV-LDH@FeOOH  heterostructures  as  high-performance  synergetic electrocatalytic water splitting[J]. Advcanced  Materials,
                 electrocatalysts for oxygen evolution reaction in alkine conditions[J].   2015, 27: 4752-4759.
                 Chemical Communications, 2020, 56(65): 9360-9363.   [27]  SONG Z Z (宋卓卓), YU Z B (余宗宝), WU H D (武宏大), et al.
            [10]  ZHOU J Q, YU L, ZHU Q  C,  et al.  Defective and ultrathin NiFe   Preparation of  CoSOH/Co(OH) 2  composite nanosheets and  its
                 LDH nanosheets decorated on  V-doped Ni 3S 2  nanorodarrays: A 3D   catalytic performance for oxygen evolution[J]. Journal of Fuel
                 core-shell electrocatalyst for efficient water oxidation[J]. Journal of   Chemistry and Technology (燃料化工), 2021,49(10): 1549-1557.
                 Materials Chemistry A, 2019, 7: 18118-18125.   [28]  NGUYENA D  H, DOANA T L,  PRABHAKARAN S,  et al.
            [11]  ZOU X  Y, WEI X L, BAO W W,  et al. Local electronic structure   Hierarchical Co and Nb dual-doped MoS 2 nanosheets shelled micro-
                 modulation of NiVP@NiFeV-LDH  electrode for high-efficiency   TiO 2 hollow spheres as effective multifunctional electrocatalysts for
                 oxygen evolution  reaction[J]. International Journal of  Hydrogen   HER, OER, and ORR[J]. Nano Energy, 2021, 82: 105750-105761.
                 Energy, 2021, 46(64): 32385-32393.            [29]  XU H, SHANG  H Y,  WANG C,  et al. Three-dimensional  open
            [12]  LIU Z Y, LI J H, ZHANG J,  et al. Ultrafine Ir nanowires with   CoMoO x/CoMoS x/CoS x nanobox electrocatalysts for efficient oxygen
                 microporous channels and superior  electrocatalytic  activity for   evolution reaction[J]. Applied Catalysis B: Environmental, 2020,
                 oxygen evolution reaction[J]. ChemCatChem, 2020, 12(11): 3060-   265: 118605-118613.
                 3067.                                         [30]  JIANG J, LIU Q X, ZHENG C  M,  et al. Cobalt/molybdenum
            [13]  YANG G J, ZHT B T, FU Y J, et al. High-valent zirconium-doping   carbide@N-doped carbon as  bifunctional electrocatalysts for
                 modified Co 3O 4 weave-like nanoarray boosts oxygen evolution[J].   hydrogen and oxygen evolution reactions[J]. Journal of Materials
                 Journal of Alloys and Compounds, 2021, 886: 161172-161179.   Chemistry A, 2017, 5: 16929-16935.
            [14]  XIE K P, MASA J, MADE J E,  et al. Co 3O 4-MnO 2-CNT hybrids   [31]  PENG W, WANG Y, YANG  X X,  et al. Co 9S 8  nanoparticles
                 synthesized by HNO 3 vapor oxidation of catalytically grown CNTs as   embedded in  multiple doped and electrospun hollow carbon
                 OER electrocatalysts[J]. ChemCatChem, 2015, 7: 3027-3035.   nanofibers as bifunctional oxygen electrocatalysts for rechargeable
            [15]  ZHANG S Y, ZHU H L, ZHENG Y Q, et al. Surface modification of   zinc-air battery[J].  Applied Catalysis  B: Environmental,  2019, 268:
                 CuO nanoflake with Co 3O 4 nanowire for oxygen evolution reaction   118437-118446.
                 and electrocatalytic reduction of CO 2 in water to syngas[J].                (下转第 211 页)
   175   176   177   178   179   180   181   182   183   184   185