Page 180 - 《精细化工》2022年第1期
P. 180
·170· 精细化工 FINE CHEMICALS 第 39 卷
化学性能归因于原位生长在基底上的微小的 3D 花 Electrochimica Acta, 2019, 299: 281-288.
[16] LIU G Q (刘国强). Preparation and electrocatalytic activities for
球阵列结构增加了催化剂的电化学活性面积,为
oxygen evolution reaction of CoB x/Co 3O 4 catalyst[J]. Chinese
OER 提供更多的活性位点;同时,Co 9 S 8 和 MoS 2 Journal of Inogranic Chemistry (无机化学学报), 2021, 37(2):
协同作用,降低了催化剂与电解液电荷转移阻力, 267-275.
[17] HUANG Y B, ZHANG M, LIU P, et al. Co 3O 4 supported on N,
利于气液传质,增强了催化剂的活性。本项工作为 P-doped carbon as a bifunctional electrocatalyst for oxygen reduction
一步法构筑高性能过渡金属硫化复合催化剂提供了 and evolution reactions[J]. Chinese Journal of Catalysis, 2016, 37(8):
新的思路和理论参考。 1249-1256.
[18] GANESAN V, KIM J. Multi-shelled CoS 2-MoS 2 hollow spheres as
efficient bifunctional electrocatalysts for overall water splitting[J].
参考文献: International Journal of Hydrogen Energy, 2020, 45(24): 13290-13299.
[1] CHEN L R (陈丽茹), TAO T X (陶庭先), LU X H (卢晓韩), et al. [19] SUN Z Y (孙志裕), CAO S (曹帅), HUANG X Q (黄小琴), et al.
Synthesis of CoS 2/AOCF composites by coordination loading Preparation of Co 3O 4@NiMn-LDH heterostructured arrays as
method and its electrocatalytic hydrogen evolution performace[J]. efficient oxygen evolution electrocatalyst[J]. Chinese Journal of
Fine Chemicals (精细化工), 2021, 38(5): 1014-1022. Inogranic Chemistry (无机化学学报), 2020, 36(10): 1899-1905.
[2] PU Z H, AMIINU I S, CHENG R L, et al. Single-atomcatalysts for [20] GUO P, WU Y X, LAO W M, et al. CoS nanosheet arrays grown on
electrochemical hydrogen evolution reaction: Recent advances and nickel foam as an excellent OER catalyst[J]. Journal of Alloys and
future perspectives[J]. Nano-Micro Letters, 2020, 12(2): 77-105. Compounds, 2017, 723: 772-778.
[3] JI X Q, MA M, GE R X, et al. WO 3 nanoarray: An efficient [21] ZHOU Y, XI S Q, YANG X G, et al. In situ hydrothermal growth of
electrochemical oxygen evolution catalyst electrode operating in metallic Co 9S 8-Ni 3S 2 nanoarrays on nickel foam as bifunctional
alkaline solution[J]. Inorganic Chemistry, 2017, 56: 14743-14746. electrocatalysts for hydrogen and oxygen evolution reactions[J].
[4] HOU J G, WU Y Z, ZHANG B, et al. Rational design of nanoarray Journal of Solid State Chemistry, 2019, 270: 398-406.
architectures for electrocatalytic water splitting[J]. Advanced [22] GUO Y N, TANG J, QIAN H Y, et al. One-pot synthesis of zeolitic
Functional Materials, 2019, 29(20): 1808367-1808395. imidazolate framework 67-derived hollow Co 3S 4@MoS 2
[5] FENG J X, WU J Q, TONG Y X, et al. Efficient hydrogen evolution heterostructures as efficient bifunctional catalysts[J]. Chemistry of
on Cu nanodots-decorated Ni 3S 2 nanotubes by optimizing atomic Materials, 2017, 29: 5566-5573.
hydrogen adsorption and desorption[J]. Journal of the American [23] LI F, LI J, CAO Z, et al. MoS 2 quantum dot decorated RGO: A
Chemical Society, 2018, 140(2): 610-617. designed electrocatalyst with high active site density for the
[6] WU A P, XIE Y, MA H, et al. Integrating the active OER and HER hydrogen evolution reaction[J]. Journal of Materials Chemistry A,
components as the heterostructures for the efficient overall water 2015, 3: 21772-21778.
splitting[J]. Nano Energy, 2018, 44: 353-363. [24] RIAZ M S, YUAN X T, ZHAO Y T, et al. Porous NiCo 2S 4/ Co 9S 8
[7] WAN K, LUO J S, ZHANG X, et al. In-situ formation of Ni (oxy) microcubes templated by sacrifcial ZnO spheres as an effcient
hydroxide on Ni foam as an efficient electrocatalyst for oxygen bifunctional oxygen electrocatalyst[J]. Advanced Sustainable
evolution reaction[J]. International Journal of Hydrogen Energy, Systerms, 2019, 3: 18001673-18001681.
2020, 45(15): 8490-8496. [25] BAI J M, MENG T, GUO D L, et al. Co 9S 8@MoS 2 core-shell
[8] TAN X L (谭小莉), HE D H (何灯红), ZHANG X W (张兴旺). heterostructures as trifunctional electrocatalysts for overall water
Preparations and electrochemical poperties of Co@NC splitting and Zn-Air batteries[J]. ACS Applied Materials Interfaces,
nanocomposites based on ZIF-67[J]. Journal of Electrochemistry (电 2018, 10: 1678-1689.
化学), 2019, 25(5): 601-607. [26] ZHU H, ZHANG J F, YAN R L, et al. When cubic cobalt sulfide
[9] BAO W W, XIAO L, ZHANG J J, et al. Interface engineering of meets layered molybdenum disulfide: A core-shell system toward
NiV-LDH@FeOOH heterostructures as high-performance synergetic electrocatalytic water splitting[J]. Advcanced Materials,
electrocatalysts for oxygen evolution reaction in alkine conditions[J]. 2015, 27: 4752-4759.
Chemical Communications, 2020, 56(65): 9360-9363. [27] SONG Z Z (宋卓卓), YU Z B (余宗宝), WU H D (武宏大), et al.
[10] ZHOU J Q, YU L, ZHU Q C, et al. Defective and ultrathin NiFe Preparation of CoSOH/Co(OH) 2 composite nanosheets and its
LDH nanosheets decorated on V-doped Ni 3S 2 nanorodarrays: A 3D catalytic performance for oxygen evolution[J]. Journal of Fuel
core-shell electrocatalyst for efficient water oxidation[J]. Journal of Chemistry and Technology (燃料化工), 2021,49(10): 1549-1557.
Materials Chemistry A, 2019, 7: 18118-18125. [28] NGUYENA D H, DOANA T L, PRABHAKARAN S, et al.
[11] ZOU X Y, WEI X L, BAO W W, et al. Local electronic structure Hierarchical Co and Nb dual-doped MoS 2 nanosheets shelled micro-
modulation of NiVP@NiFeV-LDH electrode for high-efficiency TiO 2 hollow spheres as effective multifunctional electrocatalysts for
oxygen evolution reaction[J]. International Journal of Hydrogen HER, OER, and ORR[J]. Nano Energy, 2021, 82: 105750-105761.
Energy, 2021, 46(64): 32385-32393. [29] XU H, SHANG H Y, WANG C, et al. Three-dimensional open
[12] LIU Z Y, LI J H, ZHANG J, et al. Ultrafine Ir nanowires with CoMoO x/CoMoS x/CoS x nanobox electrocatalysts for efficient oxygen
microporous channels and superior electrocatalytic activity for evolution reaction[J]. Applied Catalysis B: Environmental, 2020,
oxygen evolution reaction[J]. ChemCatChem, 2020, 12(11): 3060- 265: 118605-118613.
3067. [30] JIANG J, LIU Q X, ZHENG C M, et al. Cobalt/molybdenum
[13] YANG G J, ZHT B T, FU Y J, et al. High-valent zirconium-doping carbide@N-doped carbon as bifunctional electrocatalysts for
modified Co 3O 4 weave-like nanoarray boosts oxygen evolution[J]. hydrogen and oxygen evolution reactions[J]. Journal of Materials
Journal of Alloys and Compounds, 2021, 886: 161172-161179. Chemistry A, 2017, 5: 16929-16935.
[14] XIE K P, MASA J, MADE J E, et al. Co 3O 4-MnO 2-CNT hybrids [31] PENG W, WANG Y, YANG X X, et al. Co 9S 8 nanoparticles
synthesized by HNO 3 vapor oxidation of catalytically grown CNTs as embedded in multiple doped and electrospun hollow carbon
OER electrocatalysts[J]. ChemCatChem, 2015, 7: 3027-3035. nanofibers as bifunctional oxygen electrocatalysts for rechargeable
[15] ZHANG S Y, ZHU H L, ZHENG Y Q, et al. Surface modification of zinc-air battery[J]. Applied Catalysis B: Environmental, 2019, 268:
CuO nanoflake with Co 3O 4 nanowire for oxygen evolution reaction 118437-118446.
and electrocatalytic reduction of CO 2 in water to syngas[J]. (下转第 211 页)