Page 33 - 《精细化工》2022年第1期
P. 33

第 1 期                     周晨亮,等: FTO 反应 Fe 基催化剂活化与活性相研究进展                                 ·23·


                 Processing Technology, 2018, 169: 132-141.        Tropsch synthesis[J]. Journal of the  American Chemical Society,
            [16]  TAHARI M N A, SALLEH F, SAHARUDDIN T S T, et al. Influence   2012, 134: 15814-15821.
                 of hydrogen and carbon monoxide on reduction behavior of iron   [36]  LEI T, DONG X L, WEI X, et al. Iron-based catalysts encapsulated
                 oxide at high temperature: Effect on reduction gas concentrations[J].   by nitrogen-doped graphitic carbon for selective synthesis of liquid
                 International Journal of Hydrogen Energy, 2021, 46: 24791-24805.   fuels through the Fischer-Tropsch process[J]. Chinese Journal of
            [17]  MA Z X, ZHOU  C L, WANG D M,  et al. Co-precipitated Fe-Zr   Catalysis, 2018, 39: 1971-1979.
                                                      O
                                                         O
                 catalysts for the Fischer-Tropsch synthesis of low olefins (C 2 ~C 4 ):   [37]  PHAM T H, QI  Y Y,  YANG J,  et al.  Insights into Hägg  iron-
                 Synergistic effects of Fe and Zr[J]. Journal of Catalysis, 2019, 378:   carbide-catalyzed  Fischer-Tropsch synthesis: Suppression of CH 4
                 209-219.                                          formation and enhancement of C—C coupling on χ-Fe 5C 2 (510)[J].
            [18]  SAHARUDDIN T S T, SAMSURI A, SALLEH F, et al. Studies on   ACS Catalysis, 2015, 5: 2203-2208.
                 reduction of chromium doped iron oxide catalyst using hydrogen and   [38]  CHEN B X, WANG D, DUAN X Z, et al. Charge-tuned CO activation
                 various concentration of carbon monoxide[J]. International Journal of   over a χ-Fe 5C 2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8:
                 Hydrogen Energy, 2017, 42: 9077-9086.             2709-2714.
            [19]  TAHARI M N A, SALLEH F, SAHARUDDIN T S T, et al. Influence   [39]  ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-
                 of  hydrogen and various carbon  monoxide concentrations  on   derived alkenes over zinc and sodium-modulated Fe 5C 2 catalyst[J].
                 reduction behavior of iron oxide at low temperauture[J]. International   Angewandte Chemie International Edition, 2016, 55: 9902-9907.
                 Journal of Hydrogen Energy, 2019, 44: 20751-20759.   [40]  ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas
            [20]  SMIT D E, CINQUINI F, BEALE A M, et al. Stability and reactivity   to aromatics over  Na-Zn-Fe 5C 2 and  hierarchical HZSM-5 tandem
                 of  ε-χ-θ iron carbide catalyst phases  in Fischer-Tropsch  synthesis:   catalysts[J]. Chem, 2017, 3(1): 323-333.
                 Controlling μ C[J]. Journal of the American Chemical Society, 2010,   [41]  BENGOA J F, ALVAREZ A M, CAGNOLI M V, et al. Influence of
                 132(42): 14928-14941.                             intermediate iron reduced species in Fischer-Tropsch synthesis using
            [21]  HE R X, JIANG H Q, WU F, et al. Effect of doping rare earth oxide   Fe/C catalysts[J]. Applied Catalysis A General, 2007, 325: 68-75.
                 on  performance of copper-manganese catalysts for water-gas shift   [42]  RIEDEL T, SCHULZ H, SCHAUB G, et al. Fischer-Tropsch on iron
                 reaction[J]. Journal of Rare Earths, 2014, 32(4): 298-305.   with H 2/CO and H 2/CO 2 as synthesis gases: The episodes of formation
            [22]  CANO  L  A, CAGNOLI M V, BENGOA J F,  et al. Effect of the   of the Fischer-Tropsch regime and construction of the catalyst[J].
                 activation atmosphere on the activity of Fe catalysts supported on   Topics in Catalysis, 2003, 26: 41-54.
                 SBA-15  in the Fischer-Tropsch synthesis[J]. Journal of  Catalysis,   [43]  XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation
                 2011, 278: 310-320.                               (TPH) and in situ Mӧssbauer spectroscopy studies of carbonaceous
            [23]  TANG L, HE L, WANG Y, et al. Selective fabrication of χ-Fe 5C 2 by   species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal
                 interfering surface reactions as a highly efficient and stable Fischer-   of Physical Chemistry B, 2005, 109: 2392-2403.
                 Tropsch synthesis catalyst[J].  Applied Catalysis B: Environmental,   [44]  XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst
                 2021, 284: 119753.                                increases olefins from syngas by suppressing C1 by-products[J].
            [24]  DING M Y, YANG Y, WU B S, et al. Transformation of carbonaceous   Science, 2021, 371: 610-613.
                 species and its influence on catalytic performance for iron-based   [45]  KHAN M K, BUTOLIA P, JO H,  et al. Selective  conversion of
                 Fischer-Tropsch synthesis catalyst[J]. Journal of Molecular Catalysis   carbon dioxide into liquid hydrocarbons and long-chain  α-olefins
                 A:Chemical, 2011, 351: 165-173.                   over Fe-amorphous AlO x bifunctional catalyst[J]. ACS  Catalysis,
            [25]  JIN Y M, DATYE A K. Phase transformations in iron Fischer-   2020, 10(18): 10325-10338.
                 Tropsch catalysts during temperature-programmed reduction[J].   [46]  PENA D, COGNIGNI A, NEUMAYER T,  et al. Identification of
                 Journal of Catalysis, 2000, 196(1): 8-17.         carbon species on iron-based catalysts during Fischer-Tropsch
            [26]  GAO R, LIU X C, CAO Z, et al. Carbon permeation: The prerequisite   synthesis[J]. Applied Catalysis A: General, 2018, 554: 10-23.
                 elementary step in iron-catalyzed  Fischer-Tropsch synthesis[J].   [47]  XU K, SUN B, LIN J,  et al.  ε-Iron carbide as a low-temperature
                 Catalysis Letters, 2019, 149: 645-664.            Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014,
            [27]  LIU Q Y, SHANG C, LIU Z P. In situ active site for CO activation in   5: 5783.
                 Fe-catalyzed Fischer-Tropsch synthesis form machine learning[J].   [48]  WANG D, CHEN B X, DUAN X  Z,  et al. Iron-based Fischer-
                 Journal of the American Chemical Society, 2021, 143: 11109-11120.
            [28]  ZHANG F X,  CHEN  Y, LIU  Y,  et al. Template-assisted   Tropsch synthesis of lower olefins: The nature of χ-Fe 5C 2, catalyst
                                                                   and why  and how to introduce promoters[J]. Journal of Energy
                 polymerization- pyrolysis derived  mesoporous carbon  anchored with   Chemistry, 2016, 25(6): 911-916.
                 Fe/Fe 3C and Fe—N x species as  efficient oxygen reduction catalysts   [49]  ZHAO S, LIU X  W, HUO C F, et al. Morphology control of K 2O
                 for Zn-air battery[J]. International Journal of Hydrogen Energy,   promoter on Hagg carbide (χ-Fe 5C 2) under Fischer-Tropsch synthesis
                 2021, 46(76): 37895-37906.
            [29]  CAO Y J, PENG H Y, CHU S Q, et al. Molten-salt-assisted thermal   condition[J]. Catalysis Today, 2016, 261: 93-100.
                 emitting method to transform bulk Fe 2O 3 into Fe single atom   [50]  YANG C, ZHAO B, GAO R, et al. Construction of synergistic Fe 5C 2/Co
                 catalysts for oxygen reduction reaction in Zn-air battery[J]. Chemical   heterostructured nanoparticles as an enhanced low temperature
                 Engineering Journal, 2021, 420(7):129713.         Fischer-Tropsch synthesis catalyst[J]. ACS Catalysis, 2017, 7: 5661-
            [30]  WANG H R, LI X C, ZHU M M, et al. Preparation and evaluation of   5667.
                                                0
                 catalysts of highly dispersed zerovalent iron (Fe ) supported on   [51]  GAO W, GAO R, ZHAO Y F, et al. Photo-driven syngas conversion
                 activated carbon for NO reduction[J]. Fuel, 2021, 303: 121252.   to lower olefifins  over oxygen-decorated Fe 5C 2 catalyst[J]. Chem,
            [31]  QTUN K O, YAO Y L,  LIU X Y,  et al. Synthesis, structure, and   2018, 4(12): 2917-2918.
                 performance of carbide phases in Fischer-Tropsch  synthesis: A   [52]  QIU T, WANG L, LV S, et al. SAPO-34 zeolite encapsulated Fe 3C
                 critical review[J]. Fuel, 2021, 296: 120689.      nanoparticles as highly selective Fischer-Tropsch catalysts for the
            [32]  LU F X, CHEN X, LEI Z G, et al. Revealing the activity of different   production of light olefins[J]. Fuel, 2017, 203: 811-816.
                 iron carbides for Fischer-Tropsch synthesis[J]. Applied Catalysis B:   [53]  LIU Y,  CHEN J  F, BAO J,  et al. Manganese-modified Fe 3O 4
                 Environmental, 2021, 281: 119521.                 microsphere catalyst with effective active phase of forming light
            [33]  SUN J Q, CHEN Y L, CHEN J G. Towards stable Fe-based catalysts   olefins from syngas[J]. ACS Catalysis, 2015, 5: 3905-3909.
                 with suitable active phase for Fischer-Tropsch synthesis to lower   [54]  LIAO X Y, CAO D B, WANG S G, et al. Density functional theory
                 olefins[J]. Catalysis Communications, 2017, 91: 34-37.   study of CO adsorption on the (100), (001) and (010) surfaces of
            [34]  SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation   Fe 3C[J]. Journal of Molecular Catalysis A: Chemical, 2008, 269(1/2):
                 of precipitated iron Fischer-Tropsch synthesis catalysts[J]. Journal of   14-20.
                 Catalysis, 1995, 156(2): 185-207.             [55]  WANG Y F, LI Y, HUANG S Y, et al. Insight into CH 4 formation and
            [35]  YANG C, ZHAO H B, HOU Y L, et al. Fe 5C 2 nanoparticles: A facile   chain growth mechanism of Fischer-Tropsch synthesis on θ-Fe 3C(031)
                 bromide-induced synthesis and as an active phase for Fischer-   [J]. Chemical Physics Letters, 2017, 682: 115-121.
   28   29   30   31   32   33   34   35   36   37   38