Page 33 - 《精细化工》2022年第1期
P. 33
第 1 期 周晨亮,等: FTO 反应 Fe 基催化剂活化与活性相研究进展 ·23·
Processing Technology, 2018, 169: 132-141. Tropsch synthesis[J]. Journal of the American Chemical Society,
[16] TAHARI M N A, SALLEH F, SAHARUDDIN T S T, et al. Influence 2012, 134: 15814-15821.
of hydrogen and carbon monoxide on reduction behavior of iron [36] LEI T, DONG X L, WEI X, et al. Iron-based catalysts encapsulated
oxide at high temperature: Effect on reduction gas concentrations[J]. by nitrogen-doped graphitic carbon for selective synthesis of liquid
International Journal of Hydrogen Energy, 2021, 46: 24791-24805. fuels through the Fischer-Tropsch process[J]. Chinese Journal of
[17] MA Z X, ZHOU C L, WANG D M, et al. Co-precipitated Fe-Zr Catalysis, 2018, 39: 1971-1979.
O
O
catalysts for the Fischer-Tropsch synthesis of low olefins (C 2 ~C 4 ): [37] PHAM T H, QI Y Y, YANG J, et al. Insights into Hägg iron-
Synergistic effects of Fe and Zr[J]. Journal of Catalysis, 2019, 378: carbide-catalyzed Fischer-Tropsch synthesis: Suppression of CH 4
209-219. formation and enhancement of C—C coupling on χ-Fe 5C 2 (510)[J].
[18] SAHARUDDIN T S T, SAMSURI A, SALLEH F, et al. Studies on ACS Catalysis, 2015, 5: 2203-2208.
reduction of chromium doped iron oxide catalyst using hydrogen and [38] CHEN B X, WANG D, DUAN X Z, et al. Charge-tuned CO activation
various concentration of carbon monoxide[J]. International Journal of over a χ-Fe 5C 2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8:
Hydrogen Energy, 2017, 42: 9077-9086. 2709-2714.
[19] TAHARI M N A, SALLEH F, SAHARUDDIN T S T, et al. Influence [39] ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-
of hydrogen and various carbon monoxide concentrations on derived alkenes over zinc and sodium-modulated Fe 5C 2 catalyst[J].
reduction behavior of iron oxide at low temperauture[J]. International Angewandte Chemie International Edition, 2016, 55: 9902-9907.
Journal of Hydrogen Energy, 2019, 44: 20751-20759. [40] ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas
[20] SMIT D E, CINQUINI F, BEALE A M, et al. Stability and reactivity to aromatics over Na-Zn-Fe 5C 2 and hierarchical HZSM-5 tandem
of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: catalysts[J]. Chem, 2017, 3(1): 323-333.
Controlling μ C[J]. Journal of the American Chemical Society, 2010, [41] BENGOA J F, ALVAREZ A M, CAGNOLI M V, et al. Influence of
132(42): 14928-14941. intermediate iron reduced species in Fischer-Tropsch synthesis using
[21] HE R X, JIANG H Q, WU F, et al. Effect of doping rare earth oxide Fe/C catalysts[J]. Applied Catalysis A General, 2007, 325: 68-75.
on performance of copper-manganese catalysts for water-gas shift [42] RIEDEL T, SCHULZ H, SCHAUB G, et al. Fischer-Tropsch on iron
reaction[J]. Journal of Rare Earths, 2014, 32(4): 298-305. with H 2/CO and H 2/CO 2 as synthesis gases: The episodes of formation
[22] CANO L A, CAGNOLI M V, BENGOA J F, et al. Effect of the of the Fischer-Tropsch regime and construction of the catalyst[J].
activation atmosphere on the activity of Fe catalysts supported on Topics in Catalysis, 2003, 26: 41-54.
SBA-15 in the Fischer-Tropsch synthesis[J]. Journal of Catalysis, [43] XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation
2011, 278: 310-320. (TPH) and in situ Mӧssbauer spectroscopy studies of carbonaceous
[23] TANG L, HE L, WANG Y, et al. Selective fabrication of χ-Fe 5C 2 by species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal
interfering surface reactions as a highly efficient and stable Fischer- of Physical Chemistry B, 2005, 109: 2392-2403.
Tropsch synthesis catalyst[J]. Applied Catalysis B: Environmental, [44] XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst
2021, 284: 119753. increases olefins from syngas by suppressing C1 by-products[J].
[24] DING M Y, YANG Y, WU B S, et al. Transformation of carbonaceous Science, 2021, 371: 610-613.
species and its influence on catalytic performance for iron-based [45] KHAN M K, BUTOLIA P, JO H, et al. Selective conversion of
Fischer-Tropsch synthesis catalyst[J]. Journal of Molecular Catalysis carbon dioxide into liquid hydrocarbons and long-chain α-olefins
A:Chemical, 2011, 351: 165-173. over Fe-amorphous AlO x bifunctional catalyst[J]. ACS Catalysis,
[25] JIN Y M, DATYE A K. Phase transformations in iron Fischer- 2020, 10(18): 10325-10338.
Tropsch catalysts during temperature-programmed reduction[J]. [46] PENA D, COGNIGNI A, NEUMAYER T, et al. Identification of
Journal of Catalysis, 2000, 196(1): 8-17. carbon species on iron-based catalysts during Fischer-Tropsch
[26] GAO R, LIU X C, CAO Z, et al. Carbon permeation: The prerequisite synthesis[J]. Applied Catalysis A: General, 2018, 554: 10-23.
elementary step in iron-catalyzed Fischer-Tropsch synthesis[J]. [47] XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature
Catalysis Letters, 2019, 149: 645-664. Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014,
[27] LIU Q Y, SHANG C, LIU Z P. In situ active site for CO activation in 5: 5783.
Fe-catalyzed Fischer-Tropsch synthesis form machine learning[J]. [48] WANG D, CHEN B X, DUAN X Z, et al. Iron-based Fischer-
Journal of the American Chemical Society, 2021, 143: 11109-11120.
[28] ZHANG F X, CHEN Y, LIU Y, et al. Template-assisted Tropsch synthesis of lower olefins: The nature of χ-Fe 5C 2, catalyst
and why and how to introduce promoters[J]. Journal of Energy
polymerization- pyrolysis derived mesoporous carbon anchored with Chemistry, 2016, 25(6): 911-916.
Fe/Fe 3C and Fe—N x species as efficient oxygen reduction catalysts [49] ZHAO S, LIU X W, HUO C F, et al. Morphology control of K 2O
for Zn-air battery[J]. International Journal of Hydrogen Energy, promoter on Hagg carbide (χ-Fe 5C 2) under Fischer-Tropsch synthesis
2021, 46(76): 37895-37906.
[29] CAO Y J, PENG H Y, CHU S Q, et al. Molten-salt-assisted thermal condition[J]. Catalysis Today, 2016, 261: 93-100.
emitting method to transform bulk Fe 2O 3 into Fe single atom [50] YANG C, ZHAO B, GAO R, et al. Construction of synergistic Fe 5C 2/Co
catalysts for oxygen reduction reaction in Zn-air battery[J]. Chemical heterostructured nanoparticles as an enhanced low temperature
Engineering Journal, 2021, 420(7):129713. Fischer-Tropsch synthesis catalyst[J]. ACS Catalysis, 2017, 7: 5661-
[30] WANG H R, LI X C, ZHU M M, et al. Preparation and evaluation of 5667.
0
catalysts of highly dispersed zerovalent iron (Fe ) supported on [51] GAO W, GAO R, ZHAO Y F, et al. Photo-driven syngas conversion
activated carbon for NO reduction[J]. Fuel, 2021, 303: 121252. to lower olefifins over oxygen-decorated Fe 5C 2 catalyst[J]. Chem,
[31] QTUN K O, YAO Y L, LIU X Y, et al. Synthesis, structure, and 2018, 4(12): 2917-2918.
performance of carbide phases in Fischer-Tropsch synthesis: A [52] QIU T, WANG L, LV S, et al. SAPO-34 zeolite encapsulated Fe 3C
critical review[J]. Fuel, 2021, 296: 120689. nanoparticles as highly selective Fischer-Tropsch catalysts for the
[32] LU F X, CHEN X, LEI Z G, et al. Revealing the activity of different production of light olefins[J]. Fuel, 2017, 203: 811-816.
iron carbides for Fischer-Tropsch synthesis[J]. Applied Catalysis B: [53] LIU Y, CHEN J F, BAO J, et al. Manganese-modified Fe 3O 4
Environmental, 2021, 281: 119521. microsphere catalyst with effective active phase of forming light
[33] SUN J Q, CHEN Y L, CHEN J G. Towards stable Fe-based catalysts olefins from syngas[J]. ACS Catalysis, 2015, 5: 3905-3909.
with suitable active phase for Fischer-Tropsch synthesis to lower [54] LIAO X Y, CAO D B, WANG S G, et al. Density functional theory
olefins[J]. Catalysis Communications, 2017, 91: 34-37. study of CO adsorption on the (100), (001) and (010) surfaces of
[34] SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation Fe 3C[J]. Journal of Molecular Catalysis A: Chemical, 2008, 269(1/2):
of precipitated iron Fischer-Tropsch synthesis catalysts[J]. Journal of 14-20.
Catalysis, 1995, 156(2): 185-207. [55] WANG Y F, LI Y, HUANG S Y, et al. Insight into CH 4 formation and
[35] YANG C, ZHAO H B, HOU Y L, et al. Fe 5C 2 nanoparticles: A facile chain growth mechanism of Fischer-Tropsch synthesis on θ-Fe 3C(031)
bromide-induced synthesis and as an active phase for Fischer- [J]. Chemical Physics Letters, 2017, 682: 115-121.