Page 143 - 《精细化工》2022年第10期
P. 143
第 10 期 张秀娟,等: 超声波辅助酶法提取蓝莓果渣花色苷的工艺优化及降解动力学 ·2077·
高而增大,半衰期随着温度的升高而降低,E a 为 [16] PENG J, WANG K, MA C, et al. Determination of anthocyanin and
moisture content of purple sweet potatoes during drying process by
53.2960 kJ/mol。由热力学分析可知,花色苷热降解
their optical properties in the 400-1050 nm range[J]. Food Chemistry,
为非自发反应,说明花色苷在适宜的条件下保存可 2021, 359: 129811.
[17] ZHAO C Y (赵晨雨), LI H M (李慧敏), WANG X Y (王新媛), et al.
以有效防止其降解。该研究为蓝莓果渣废弃物的资
Optimization of enzymatic extraction and composition analysis of
源化利用提供了理论依据,对蓝莓花色苷的不同降 anthocyanins from Acanthopanax senticosus dried fruit[J]. Journal of
解动力学类型差异和稳定性给出了解释及解决方 Food Safety & Quality(食品安全质量检测学报), 2021, 12(17):
7006-7013.
案,对蓝莓花色苷的应用开发具有实际指导意义。 [18] NIE M (聂铭), LU S M (陆胜民), WANG Y G (王阳光), et al.
Optimization of anthocyanins extraction assisted with pectinase from
参考文献: red bayberry by response surface methodology[J]. Food Science and
Technology (食品科技), 2021, 46(7): 194-200.
[1] ZHANG C R (张昌容), LI Z (李志), HE Y F (何永福), et al. Research [19] JIA H B (贾鸿冰), TIAN J Y (田继远), YU J (于娟). Effect of
progress on functional ingredients and comprehensive utilization of enzymatic hydrolysis of compound pectinase on juice yield and
blueberry pomace[J]. Food Science and Technology (食品科技), anthocyanin extraction from blueberry[J]. Food Science and
2021, 46(6): 110-114. Technology (食品科技), 2016, 41(6): 270-274.
[2] STRUCK S, PLAZA M, TURNER C, et al. Berry pomace—A [20] BI K Y (毕凯媛), CUI S S (崔珊珊), GAO Y (高阳), et al.
review of processing and chemical analysis of its polyphenols[J]. Ultrasonic-assisted pectinase extraction and identification of
International Journal of Food Science & Technology, 2016, 51(6): anthocyanins from Rubusidaeus L.[J]. Science and Technology of
1305-1318. Food Industry (食品工业科技), 2018, 39(13): 198-205.
[3] BUNEA A, RUGINĂ D, SCONŢA Z, et al. Anthocyanin [21] AKBARI S, ABDURAHMAN N H, YUNUS R M. Optimization of
determination in blueberry extracts from various cultivars and their saponins, phenolics, and antioxidants extracted from fenugreek seeds
antiproliferative and apoptotic properties in B16-F10 metastatic using microwave-assisted extraction and response surface
murine melanoma cells[J]. Phytochemistry, 2013, 95: 436-444. methodology as an optimizing tool[J]. Comptes Rendus Chimie,
[4] LEI L B (雷良波), YANG H (杨浩), CHEN J L (陈军李), et al. 2019, 22(11/12): 714-727.
Development and utilization of blueberry pomace: A review[J]. [22] CHEN X Q (陈小强), LIU L L (刘玲玲), SUN T T (孙彤彤), et al.
China Brewing (中国酿造), 2017, 36(10): 17-22.
[5] LI C Y, FENG J, HUANG W Y, et al. Composition of polyphenols Optimization of extraction of total phenolics and total flavonoids
from Phellodendron amurense fruit by response surface method and
and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in their antioxidant activities[J]. Fine Chemicals (精细化工), 2020,
Nanjing[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3):
523-531. 37(2): 300-308.
[6] AMR A, AL-TAMIMI E. Stability of the crude extracts of Ranunculus [23] CHEN X Q, LI Z H, WANG Z J, et al. Ultrasound-assisted extraction
asiaticus anthocyanins and their use as food colourants[J]. International of total anthocyanins from Rubia sylvatica Nakai fruit and radical
Journal of Food Science & Technology, 2010, 42(8): 985-991. scavenging activity of the extract[J]. Industrial Crops and Products,
[7] HERRMAN D A, BRANTSEN J F, RAVISANKAR S, et al. Stability 2020, 150: 112420.
of 3-deoxyanthocyanin pigment structure relative to anthocyanins [24] XU B G, FENG M, TILIWA E S, et al. Multi-frequency power
from grains under microwave assisted extraction[J]. Food Chemistry, ultrasound green extraction of polyphenols from Pingyin rose:
2020, 333: 127494. Optimization using the response surface methodology and
[8] TABARAKI R, NATEGHI A. Optimization of ultrasonic-assisted exploration of the underlying mechanism[J]. LWT-Food Science and
extraction of natural antioxidants from rice bran using response Technology, 2022, 156: 113037.
surface methodology[J]. Ultrasonics Sonochemistry, 2011, 18(6): [25] JIANG H L, YANG J L, SHI Y P. Optimization of ultrasonic cell
1279-1286. grinder extraction of anthocyanins from blueberry using response
[9] OSETE-ALCARAZA, GÓMEZ-PLAZA E, PÉREZ-PORRAS P, surface methodology[J]. Ultrasonics Sonochemistry, 2017, 34:
et al. Revisiting the use of pectinases in enology: A role beyond 325-331.
facilitating phenolic grape extraction[J]. Food Chemistry, 2022, 372: [26] LIU N (刘娜), CHEN L Z (陈灵智), ZHANG Y (张彦), et al.
131282. Response surface optimization on ultrasound-assisted extraction of
[10] MEINI M R, CABEZUDO I, BOSCHETTI C E, et al. Recovery of hemp cannabinoids and study on anti-oxidation property[J]. Modern
phenolic antioxidants from Syrah grape pomace through the Chemical Industry (现代化工), 2019, 39(1): 144-149.
optimization of an enzymatic extraction process[J]. Food Chemistry, [27] MO Z Z (磨正遵), SHANG F F (商飞飞), PAN Z T (潘中田), et al.
2019, 283: 257-264. Optimization of ultrasonic-assisted extraction of flavonoids from
[11] GARG G, SINGH A, KAUR A, et al. Microbial pectinases: An Guangxi big fruit hawthorn leaves by response surface
ecofriendly tool of nature for industries[J]. 3 Biotech, 2016, 6(1): methodology[J]. Journal of Southern Agriculture (南方农业学报),
1-13. 2018, 49(5): 986-992.
[12] LUO X L (罗晓玲), XU J H (徐嘉红), YANG W B (杨武斌), et al. [28] SUN J X (孙建霞), ZHANG Y (张燕), HU X S (胡小松), et al.
Research progress in antioxidant function and stability of blueberry Structural stability and degradation mechanisms of anthocyanins[J].
anthocyanins[J]. Science and Technology of Food Industry (食品工 Scientia Agricultura Sinica (中国农业科学), 2009, 42(3): 996-1008.
业科技), 2018, 39(4): 312-317. [29] SUI X N, BARY S, ZHOU W B. Changes in the color, chemical
[13] JIANG T, MAO Y, SUI L H, et al. Degradation of anthocyanins and stability and antioxidant capacity of thermally treated anthocyanin
polymeric color formation during heat treatment of purple sweet aqueous solution over storage[J]. Food Chemistry, 2016, 192: 516-
potato extract at different pH[J]. Food Chemistry, 2018, 274: 460- 524.
470. [30] YANNIOTIS S, TAOUKIS P, STOFOROS N G, et al. Advances in
[14] LI E H (李恩惠), JIAO X Y (矫馨瑶), WANG C G (王晨歌), et al. food process engineering research and applications[M]. New York:
Degradation kinetics and stability of anthocyanins from blueberry[J]. Springer, 2011: 489-497.
Food Science (食品科学), 2018, 39(5): 1-7. [31] WU X H, LIN Q W, BELWAL T, et al. Effect of advanced/hybrid
[15] LIU Y H, SUN Y, XIE A G, et al. Potential of hyperspectral imaging oxidation process involving ultrasonication and ultraviolet radiation
for rapid prediction of anthocyanin content of purple-fleshed sweet (sonophotolysis) on anthocyanin stability: Degradation kinetics and
potato slices during drying process[J]. Food Analytical Methods, mechanism[J]. Food Chemistry, 2021, 370: 131083.
2017, 10(12): 3836-3846. (下转第 2098 页)