Page 143 - 《精细化工》2022年第10期
P. 143

第 10 期            张秀娟,等:  超声波辅助酶法提取蓝莓果渣花色苷的工艺优化及降解动力学                                   ·2077·


            高而增大,半衰期随着温度的升高而降低,E a 为                           [16]  PENG J, WANG K, MA C, et al. Determination of anthocyanin and
                                                                   moisture content of purple sweet potatoes during drying process by
            53.2960 kJ/mol。由热力学分析可知,花色苷热降解
                                                                   their optical properties in the 400-1050 nm range[J]. Food Chemistry,
            为非自发反应,说明花色苷在适宜的条件下保存可                                 2021, 359: 129811.
                                                               [17]  ZHAO C Y (赵晨雨), LI H M (李慧敏), WANG X Y (王新媛), et al.
            以有效防止其降解。该研究为蓝莓果渣废弃物的资
                                                                   Optimization of enzymatic extraction and composition analysis of
            源化利用提供了理论依据,对蓝莓花色苷的不同降                                 anthocyanins from Acanthopanax senticosus dried fruit[J]. Journal of
            解动力学类型差异和稳定性给出了解释及解决方                                  Food Safety & Quality(食品安全质量检测学报), 2021, 12(17):
                                                                   7006-7013.
            案,对蓝莓花色苷的应用开发具有实际指导意义。                             [18]  NIE M (聂铭), LU S M (陆胜民), WANG  Y G (王阳光),  et al.
                                                                   Optimization of anthocyanins extraction assisted with pectinase from
            参考文献:                                                  red bayberry by response surface methodology[J]. Food Science and
                                                                   Technology (食品科技), 2021, 46(7): 194-200.
            [1]   ZHANG C R (张昌容), LI Z (李志), HE Y F (何永福), et al. Research   [19]  JIA H B (贾鸿冰), TIAN J  Y (田继远),  YU J (于娟). Effect of
                 progress on functional ingredients and comprehensive utilization of   enzymatic hydrolysis of compound  pectinase on juice yield and
                 blueberry pomace[J]. Food Science  and Technology (食品科技),   anthocyanin extraction from blueberry[J]. Food  Science  and
                 2021, 46(6): 110-114.                             Technology (食品科技), 2016, 41(6): 270-274.
            [2]   STRUCK S, PLAZA M, TURNER  C,  et al. Berry  pomace—A   [20]  BI K Y (毕凯媛), CUI S S (崔珊珊), GAO  Y (高阳),  et al.
                 review of processing and chemical analysis of its polyphenols[J].   Ultrasonic-assisted pectinase extraction and identification of
                 International Journal of Food Science &  Technology, 2016, 51(6):   anthocyanins from  Rubusidaeus L.[J]. Science  and Technology of
                 1305-1318.                                        Food Industry (食品工业科技), 2018, 39(13): 198-205.
            [3]   BUNEA A, RUGINĂ D, SCONŢA Z,  et al. Anthocyanin   [21]  AKBARI S, ABDURAHMAN N H, YUNUS R M. Optimization of
                 determination in blueberry extracts from various cultivars and their   saponins, phenolics, and antioxidants extracted from fenugreek seeds
                 antiproliferative and apoptotic properties in B16-F10  metastatic   using microwave-assisted extraction and  response surface
                 murine melanoma cells[J]. Phytochemistry, 2013, 95: 436-444.   methodology as an optimizing tool[J]. Comptes Rendus Chimie,
            [4]   LEI L B  (雷良波), YANG  H (杨浩), CHEN J L (陈军李),  et al.   2019, 22(11/12): 714-727.
                 Development and  utilization of blueberry pomace: A  review[J].   [22]  CHEN X Q (陈小强), LIU L L (刘玲玲), SUN T T (孙彤彤), et al.
                 China Brewing (中国酿造), 2017, 36(10): 17-22.
            [5]   LI C Y, FENG J, HUANG W Y, et al. Composition of polyphenols   Optimization of extraction  of total phenolics and total flavonoids
                                                                   from Phellodendron amurense fruit by response surface method and
                 and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in   their antioxidant activities[J]. Fine Chemicals (精细化工), 2020,
                 Nanjing[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3):
                 523-531.                                          37(2): 300-308.
            [6]   AMR A, AL-TAMIMI E. Stability of the crude extracts of Ranunculus   [23]  CHEN X Q, LI Z H, WANG Z J, et al. Ultrasound-assisted extraction
                 asiaticus anthocyanins and their use as food colourants[J]. International   of total anthocyanins from  Rubia sylvatica Nakai fruit and radical
                 Journal of Food Science & Technology, 2010, 42(8): 985-991.   scavenging activity of the extract[J]. Industrial Crops and Products,
            [7]   HERRMAN D A, BRANTSEN J F, RAVISANKAR S, et al. Stability   2020, 150: 112420.
                 of 3-deoxyanthocyanin pigment structure relative to anthocyanins   [24]  XU B G, FENG  M, TILIWA E S,  et al. Multi-frequency power
                 from grains under microwave assisted extraction[J]. Food Chemistry,   ultrasound green extraction of polyphenols from  Pingyin  rose:
                 2020, 333: 127494.                                Optimization using the response surface  methodology and
            [8]   TABARAKI R, NATEGHI  A. Optimization of ultrasonic-assisted   exploration of the underlying mechanism[J]. LWT-Food Science and
                 extraction  of natural antioxidants  from rice bran using response   Technology, 2022, 156: 113037.
                 surface  methodology[J]. Ultrasonics  Sonochemistry, 2011, 18(6):   [25]  JIANG H L, YANG J L, SHI  Y P.  Optimization of ultrasonic cell
                 1279-1286.                                        grinder extraction  of anthocyanins  from blueberry using response
            [9]   OSETE-ALCARAZA, GÓMEZ-PLAZA E, PÉREZ-PORRAS P,   surface methodology[J]. Ultrasonics Sonochemistry,  2017, 34:
                 et al. Revisiting the use of  pectinases in enology:  A role beyond   325-331.
                 facilitating phenolic grape extraction[J]. Food Chemistry, 2022, 372:   [26]  LIU N (刘娜), CHEN  L Z (陈灵智), ZHANG Y (张彦),  et al.
                 131282.                                           Response surface optimization on ultrasound-assisted extraction of
            [10]  MEINI M R, CABEZUDO I, BOSCHETTI C E, et al. Recovery of   hemp cannabinoids and study on anti-oxidation property[J]. Modern
                 phenolic antioxidants  from Syrah grape pomace through  the   Chemical Industry (现代化工), 2019, 39(1): 144-149.
                 optimization of an enzymatic extraction process[J]. Food Chemistry,   [27]  MO Z Z (磨正遵), SHANG F F (商飞飞), PAN Z T (潘中田), et al.
                 2019, 283: 257-264.                               Optimization of ultrasonic-assisted extraction  of flavonoids from
            [11]  GARG G, SINGH A, KAUR A,  et al. Microbial pectinases: An   Guangxi big fruit hawthorn leaves by response surface
                 ecofriendly tool of nature for industries[J]. 3 Biotech, 2016, 6(1):   methodology[J]. Journal of Southern Agriculture (南方农业学报),
                 1-13.                                             2018, 49(5): 986-992.
            [12]  LUO X L (罗晓玲), XU J H (徐嘉红), YANG W B (杨武斌), et al.   [28]  SUN J X (孙建霞), ZHANG  Y (张燕), HU X S (胡小松),  et al.
                 Research progress in antioxidant function and stability of blueberry   Structural stability and degradation mechanisms of anthocyanins[J].
                 anthocyanins[J]. Science and Technology of Food Industry (食品工  Scientia Agricultura Sinica (中国农业科学), 2009, 42(3): 996-1008.
                 业科技), 2018, 39(4): 312-317.                   [29]  SUI X N, BARY  S, ZHOU W B. Changes in the color, chemical
            [13]  JIANG T, MAO Y, SUI L H, et al. Degradation of anthocyanins and   stability and antioxidant capacity of thermally treated anthocyanin
                 polymeric color formation during  heat treatment of purple sweet   aqueous solution over storage[J]. Food Chemistry, 2016, 192: 516-
                 potato extract at different  pH[J]. Food Chemistry, 2018,  274: 460-   524.
                 470.                                          [30]  YANNIOTIS S, TAOUKIS P, STOFOROS N G, et al. Advances in
            [14]  LI E H (李恩惠), JIAO X Y (矫馨瑶), WANG C G (王晨歌), et al.   food process engineering research and applications[M]. New  York:
                 Degradation kinetics and stability of  anthocyanins from blueberry[J].   Springer, 2011: 489-497.
                 Food Science (食品科学), 2018, 39(5): 1-7.        [31]  WU X H, LIN Q W, BELWAL T, et al. Effect of advanced/hybrid
            [15]  LIU Y H, SUN Y, XIE A G, et al. Potential of hyperspectral imaging   oxidation process involving ultrasonication and ultraviolet radiation
                 for rapid prediction of anthocyanin content of purple-fleshed sweet   (sonophotolysis) on anthocyanin stability: Degradation kinetics and
                 potato slices during drying  process[J]. Food Analytical Methods,   mechanism[J]. Food Chemistry, 2021, 370: 131083.
                 2017, 10(12): 3836-3846.                                                    (下转第 2098 页)
   138   139   140   141   142   143   144   145   146   147   148