Page 29 - 《精细化工》2022年第10期
P. 29

第 10 期                    张志强,等:  功能性纤维素微球的制备及其应用研究进展                                   ·1963·


                 performance of  carboxymethyl cellulose  microspheres crosslinked   [54]  PEI Y, XU G Q, WU X, et al. Removing Pb(Ⅱ) ions from aqueous
                 with epichlorohydrin[J]. Journal of Applied Polymer Science, 2017,   solution  by a promising absorbent of  tannin-immobilized cellulose
                 134(2): 44363.                                    microspheres[J]. Polymers, 2019, 11(3): 548.
            [44]  DONG Z, ZHAO L. Surface modification of cellulose microsphere   [55]  WU X D, CAO J S, BAO S S, et al. Preparation and application of
                 with imidazolium-based ionic liquid as adsorbent: Effect of anion   modified three-dimensional cellulose microspheres for  paclitaxel
                 variation on adsorption ability towards Au(Ⅲ)[J]. Cellulose, 2018,   targeted separation[J]. Journal of Chromatography A, 2021, 1655:
                 25(4): 2205-2216.                                 462487.
            [45]  ZHANG M M, DONG Z, HAO F L, et al. Ultrahigh and selective   [56]  JAMSHAID A, HAMID A, MUHAMMAD N, et al. Cellulose-based
                 adsorption of Au(Ⅲ) by rich sulfur  and nitrogen-bearing cellulose   materials for the removal of heavy  metals from wastewater-An
                 microspheres and their applications in gold recovery from gold slag   overview[J]. ChemBioEng Reviews, 2017, 4(4): 240-256.
                 leaching solution[J]. Separation and Purification Technology, 2021,   [57]  HIROTA M, TAMURA N, SAITO T, et al. Surface carboxylation of
                 274: 119016.                                      porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/
            [46]  ZHANG L J (张陆军). Preparation of ethyl cellulose microspheres   NaClO 2 system[J]. Cellulose, 2009, 16(5): 841-851.
                 for applicating in separated of  cyclocarya paliurus  active   [58]  SUN P J, YANG S, SUN X H, et al. Functional porous carboxymethyl
                 components[D]. Lanzhou: Northwest Minzu University (西北民族大  cellulose/cellulose  acetate composite microspheres: Preparation,
                 学), 2021.                                         characterization, and application in the  effective removal of HCN
            [47]  LI Z  Y,  LU S T, JIN J Q,  et al. Preparation  of a new cellulose   from cigarette smoke[J]. Polymers, 2019, 11(1): 181.
                 magnetic  molecularly imprinted  polymer  micro-spheres to extract   [59]  MA C (麻灿), DAI X H (戴学海), WU S M (吴锶美),  et al.
                 and  analyze  the indole-3-acetic  acid in plant tissues[J]. Journal of   Adsorption of amoxicillin on nanosized magnesium oxide/cellulose
                 Chromatography B-Analytical Technologies in the Biomedical and   composite microspheres[J]. Journal of Cellulose Science and
                 Life Sciences, 2018, 1092: 343-349.               Technology (纤维素科学与技术), 2019, 27(2): 46-51.
            [48]  LI Y L, FENG  Y  C, JING J,  et al.  Cellulose/guar gum hydrogel   [60]  DONG C Y, SHI  H X, HAN  Y R,  et al. Molecularly  imprinted
                 microspheres as a magnetic anticancer drug carrier[J]. Bioresources,   polymers by the surface imprinting technique[J]. European Polymer
                 2019, 14(2): 3615-3629.                           Journal, 2020, 145(21):110231.
            [49]  WU S M, GONG Y Q, LIU S L, et al. Functionalized phosphorylated   [61] LI Y L (李艳丽). Preparation and properties of cellulose-based drug-
                 cellulose microspheres: Design, characterization and ciprofloxacin   carrying functional materials[D]. Guangzhou: South China University
                 loading and releasing properties[J]. Carbohydrate Polymers, 2021,   of Technology (华南理工大学), 2019.
                 254: 117421.                                  [62]  PEI Y (裴莹). Construction, structure and properties of biomedical
            [50]  LIANG C, ZHAO L S, LI S S, et al. Direct preparation of porous   materials based on cellulose[D]. Wuhan: Wuhan University (武汉大
                 cellulose microspheres  via a self-growth process on  bamboo  fibers   学), 2013.
                 and their  functionalization for specific adsorption of  histidine-rich   [63]  BULUT E, TURHAN Y. Synthesis and characterization of temperature-
                 proteins[J]. Journal of Chromatography A, 2020, 1633: 461636.   sensitive microspheres based on acrylamide grafted hydroxypropyl
            [51]  LIU J, ZHANG H X, SHI Y P. Lipase immobilization on magnetic   cellulose and chitosan for the controlled  release of amoxicillin
                 cellulose microspheres for rapid screening inhibitors from traditional   trihydrate[J]. International Journal  of  Biological Macromolecules,
                 herbal medicines[J]. Talanta, 2021, 231: 122374.   2021, 191: 1191-1203.
            [52]  WIJAYANTI L, SETIASIH S, HUDIYONO S. Encapsulation of   [64]  PANG J Y (庞锦英), HUANG C Y (黄春艳), TAN D F (谭登峰),
                 bromelain in alginate-carboxymethyl cellulose microspheres as an   et al. Preparation and properties of banana microcrystalline cellulose/
                 antiplatelet agent[J]. Journal of Physics: Conference Series, 2021,   PLGA mesoporous material loading mecobalamin[J]. Fine Chemicals
                 1943: 012165.                                     (精细化工), 2019, 36(3): 368-373.
            [53]  RUAN C Q, STROMME M, LINDH J. Preparation of porous 2,3-   [65]  XUE F, CHEN Q, LI Y L, et al. Immobilized lysozyme onto 1,2,3,4-
                 dialdehyde cellulose beads crosslinked with chitosan and their   butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere
                 application in adsorption  of congo red dye[J]. Carbohydrate   for improving bio-catalytic stability and activities[J]. Enzyme  and
                 Polymers, 2018, 181: 200-207.                     Microbial Technology, 2019, 131: 109425.


            (上接第 1952 页)                                           water evaporation and thermoelectric power generation[J]. Advanced
            [52]  WEI Z C, CAI C Y, HUANG Y Z, et al. Biomimetic surface strategy   Functional Materials, 2021, 31: 2106247.
                 of spectrum-tailored liquid metal via blackbody inspiration for highly   [57]  CAO P, ZHAO  L M,  YANG Z  P,  et al. Carbon nanotube
                 efficient solar steam generation, desalination, and  electricity   network-based  solar-thermal water  evaporator and thermoelectric
                 generation[J]. Nano Energy, 2021, 86: 106138.     module for electricity generation[J].  ACS Applied Nano Materials
            [53]  LIU X H, MISHRA  D  D, LI  Y K,  et al. Biomass-derived   2021, 4: 8906-8912.
                 carbonaceous materials with multichannel waterways for solar-driven   [58]  HOU B F, KONG D N, QIAN J W,  et al. Flexible and portable
                 clean water and thermoelectric power generation[J]. ACS Sustainable   graphene on carbon cloth as a power generator for electricity
                 Chemistry & Engineering, 2021, 9: 4571-4582.      generation[J]. Carbon, 2018, 140: 488-493.
            [54]  DUAN Y M, WENG M C, ZHANG W, et al. Multi-functional carbon   [59]  MA X, LI Z Y, DENG Z,  et al. Efficiently cogenerating drinkable
                 nanotube paper for solar water evaporation combined with electricity   water  and electricity from seawater  via  flexible MOF nanorod
                 generation and storage[J]. Energy Conversion and Management,   arrays[J]. Journal of Materials Chemistry A, 2021, 9: 9048-9055.
                 2021, 241: 114306.                            [60]  QI P, REN J, LING S J. Animal silk-derived amorphous carbon
            [55]  WANG P F, WANG X Y, CHEN S Y, et al. Reduced red mud as the   fibers for electricity generation and solar steam evaporation[J].
                 solar  absorber  for  solar-driven  water  evaporation  and  Frontiers in Chemistry, 2021, 9: 669797.
                 vapor-electricity generation[J]. ACS Applied Materials & Interfaces,   [61]  XIAO P, HE J, NI F, et al. Exploring interface confined water flow
                 2021, 13: 30556-30564.                            and evaporation enables solar-thermal-electro integration towards
            [56]  CUI Y Y, LIU J, LI Z Q, et al. Donor-acceptor-type organic-small-   clean water and electricity harvest via asymmetric functionalization
                 molecule-based solar-energy-absorbing  material for highly efficient   strategy[J]. Nano Energy, 2020, 68: 104385.
   24   25   26   27   28   29   30   31   32   33   34