Page 100 - 《精细化工》2022年第12期
P. 100

·2466·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [2]   ZHENG Y J (郑永杰), LU Z R (卢致瑞), TIAN J Z (田景芝), et al.   methylene blue and tetracycline[J]. Spectrochimica  Acta Part A:
                 Preparation of TiO 2/MOFs and current status of pollutant   Molecular and Biomolecular Spectroscopy, 2019, 214: 103-110.
                 degradation[J]. Fine Chemicals (精细化工), 2021, 38(11): 2208-2218.   [13]  PAN J H, LEE W I. Preparation of highly ordered cubic mesoporous
            [3]   LIU R P (刘汝鹏), ZHANG  Z (张震),  SUN C Z  (孙翠珍),  et al.   WO 3/TiO 2 films and their photocatalytic properties[J]. Chemistry of
                 Progress  in the study of non-homogeneous catalytic ozonation of   Materials, 2006, 18(3): 847-853.
                 pharmaceuticals and personal care products in water[J]. Fine Chemicals   [14]  SU J A, FENG X  J, SLOPPY J D,  et al. Vertically aligned WO 3
                 (精细化工), 2022, 39(3): 469-479.                     nanowire arrays grown directly on transparent conducting oxide
            [4]   KI S J, PARK Y, KIM J, et al. Facile preparation of tungsten oxide   coated glass: Synthesis and photoelectrochemical properties[J]. Nano
                 doped TiO 2 photocatalysts using  liquid phase plasma process for   Letters, 2011, 11(1): 203-208.
                 enhanced degradation of diethyl phthalate[J]. Chemical Engineering   [15]  MORALES  W, CASON  M, AINA O,  et al. Combustion synthesis
                 Journal, 2019, 377: 120087.                       and characterization of nanocrystalline WO 3[J]. Journal of the
            [5]   RHAMAN M M, GANGULIS,  BERAS,  et al. Visible-light   American Chemical Society, 2008, 130(20): 6318-6319.
                 responsive novel WO 3/TiO 2 and Au loaded WO 3/TiO 2 nanocomposite   [16]  ZHANG Y, ZHOU J B, CAI W  Q, et al. Enhanced photocatalytic
                 and wastewater remediation: Mechanistic inside and photocatalysis   performance and degradation  pathway of rhodamine B over
                 pathway[J]. Journal of Water Process Engineering, 2020, 36: 101256.   hierarchical double-shelled zinc nickel oxide hollow sphere
            [6]   HAN X P, YAO B H, LI K Y, et al. Preparation and photocatalytic   heterojunction[J]. Applied Surface Science, 2018, 430: 549-560.
                 performances of WO 3/TiO 2 composite nanofibers[J]. Journal of   [17]  BAO N Z, FENG X, YANG Z H, et al. Highly efficient liquid-phase
                 Chemistry, 2020. DOI: 10.1155/2020/2390486.       photooxidation of an azo dye  methyl orange over novel
            [7]   LEGHARI S A K, SAJJAD S, CHEN F, et al. WO 3/TiO 2 composite   nanostructured porous titanate-based fiber of self-supported  radially
                 with morphology change via hydrothermal template-free route as an   aligned H 2Ti 8O 17•1.5H 2O nanorods[J]. Environmental Science &
                 efficient visible light photocatalyst[J]. Chemical Engineering Journal,   Technology, 2004, 38(9): 2729-2736.
                 2011, 166(3): 906-915.                        [18]  SHI Y Y, LUO L J, ZHANG Y F, et al. Synthesis and characterization
            [8]   YANG L X, XIAO Y, LIU S H, et al. Photocatalytic reduction of Cr   of  α/β-Bi 2O 3 with enhanced photocatalytic activity for  17α-
                 (Ⅵ) on WO 3 doped long TiO 2 nanotube arrays in the  presence of   ethynylestradiol[J]. Ceramics International, 2017, 43(10): 7627-7635.
                 citric acid[J]. Applied Catalysis B: Environmental, 2010, 94(1/2):   [19]  ZHANG S Q, ZHANG  Z F, LI  B,  et al. Hierarchical  Ag 3PO 4@
                 142-149.                                          ZnIn 2S 4  nanoscoparium: An innovative  Z-scheme photocatalyst for
            [9]   CHEN  Z W, JIANG H, JIN W L,  et al. Enhanced  photocatalytic   highly efficient and predictable tetracycline degradation[J]. Journal
                 performance over Bi 4Ti 3O 12  nanosheets with controllable size and   of Colloid and Interface Science, 2021, 586: 708-718.
                 exposed {001} facets for rhodamine B degradation[J]. Applied   [20]  SHENAWI-KHALIL S, UVAROV V, KRITSMAN Y, et al. A new
                 Catalysis B: Environmental, 2016, 180: 698-706.   family of BiO(Cl xBr 1−x) visible light sensitive photocatalysts[J].
            [10]  WANG D  L, LI  H P, DU N,  et al. Space-confined synthesis of   Catalysis Communications, 2011, 12(12): 1136-1141.
                 monolayer molybdenum disulfide using tetrathiomolybdate intercalated   [21]  ZHANG X Y, WANG X,  CHAI J N,  et al. Construction of novel
                 layered double hydroxide as precursor[J]. Journal of Colloid and   symmetric double  Z-scheme BiFeO 3/CuBi 2O 4/BaTiO 3  photocatalyst
                 Interface Science, 2019, 541: 183-191.            with enhanced solar-light-driven  photocatalytic performance for
            [11]  WANG D  L,  LI H P, DU  N,  et al. Single platinum atoms   degradation of norfloxacin[J]. Applied Catalysis B: Environmental,
                 immobilized on  monolayer tungsten trioxide  nanosheets as an   2020, 272: 119017.
                 efficient electrocatalyst for hydrogen evolution reaction[J]. Advanced   [22]  XU D F, CHENG B, CAO S W,  et al. Enhanced photocatalytic
                 Functional Materials, 2021, 31(23): 2009770.      activity and stability of  Z-scheme Ag 2CrO 4-GO composite
            [12]  MA Z Y,  DENG  L J, FAN G,  et al. Hydrothermal synthesis of   photocatalysts for organic pollutant degradation[J]. Applied Catalysis
                 p-C 3N 4/f-BiOBr composites with  highly efficient degradation of   B: Environmental, 2015, 164: 380-388.




            (上接第 2455 页)                                       [17]  XU B W, HAN  F L, PEI X Q,  et al. Concise and efficient
            [12]  TU J,  XU H, XIANG G F,  et al.  Rapid self-healing  and tough   self-healing cross-linked  polyurethanes  via the  blocking/deblocking
                 polyurethane based on the synergy of multi-level hydrogen bonds   reaction of oxime urethanes[J]. Industrial & Engineering Chemistry
                 and disulfide bonds for healing propellant microcracks[J]. Materials   Research, 2021, 60(30): 11095-11105.
                 Chemistry Frontiers, 2022, 6(9): 1161-1171.   [18]  LEI Z Q, XIE P, RONG M Z, et al. Catalyst-free dynamic exchange
            [13]  RONG J C, ZHONG J, YAN W L,  et al. Study on  waterborne   of aromatic Schiff base bonds and its application to self-healing and
                 self-healing  polyurethane with dual  dynamic units of  quadruple   remolding of crosslinked polymers[J]. Journal of Materials Chemistry
                 hydrogen bonding and disulfide bonds[J]. Polymer, 2021, 221:   A, 2015, 3(39): 19662-19668.
                 123625.                                       [19]  CHANG  K, JIA  H, GU S  Y.  A transparent, highly stretchable,
            [14]  HU J, MO R B, SHENG X X,  et al. A self-healing polyurethane   self-healing polyurethane based on disulfide bonds[J]. European
                 elastomer with excellent mechanical properties based on phase-locked   Polymer Journal, 2019, 112: 822-831.
                 dynamic imine bonds[J]. Polymer Chemistry, 2020, 11(14): 2585-2594.   [20]  HUANG H H, ZHOU W, ZHONG Z Y,  et al. Self-antiglare
            [15]  FAN W H, JIN Y, SHI L J, et al. Developing visible-light-induced   waterborne coating with superior mechanical robustness and highly
                 dynamic  aromatic Schiff base bonds for  room-temperature   efficient room-temperature self-healing capability[J]. Progress in
                 self-healable and reprocessable waterborne polyurethanes with high   Organic Coatings, 2020, 146: 105717.
                 mechanical properties[J]. Journal of Materials Chemistry  A, 2020,   [21]  ZHANG Q (张桥). Synthesis and properties of novel double Schiff
                 8(14): 6757-6767.                                 bases[D]. Urumqi: Xinjiang University (新疆大学), 2016.
            [16]  MIN J B, ZHOU Z X, WANG  H  N,  et al. Room temperature   [22]  XIONG J (熊军), SUN F (孙芳), DU H G (杜洪光). Determination
                 self-healing and recyclable  conductive composites for flexible   of isocyanate group in  polyurethane by acetone-di-n-butylamine
                 electronic devices based on imine reversible covalent bond[J].   titration[J]. Chinese Journal  of Analysis Laboratory (分析试验室),
                 Journal of Alloys and Compounds, 2022, 894: 162433.   2007, (8): 73-76.
   95   96   97   98   99   100   101   102   103   104   105