Page 100 - 《精细化工》2022年第12期
P. 100
·2466· 精细化工 FINE CHEMICALS 第 39 卷
[2] ZHENG Y J (郑永杰), LU Z R (卢致瑞), TIAN J Z (田景芝), et al. methylene blue and tetracycline[J]. Spectrochimica Acta Part A:
Preparation of TiO 2/MOFs and current status of pollutant Molecular and Biomolecular Spectroscopy, 2019, 214: 103-110.
degradation[J]. Fine Chemicals (精细化工), 2021, 38(11): 2208-2218. [13] PAN J H, LEE W I. Preparation of highly ordered cubic mesoporous
[3] LIU R P (刘汝鹏), ZHANG Z (张震), SUN C Z (孙翠珍), et al. WO 3/TiO 2 films and their photocatalytic properties[J]. Chemistry of
Progress in the study of non-homogeneous catalytic ozonation of Materials, 2006, 18(3): 847-853.
pharmaceuticals and personal care products in water[J]. Fine Chemicals [14] SU J A, FENG X J, SLOPPY J D, et al. Vertically aligned WO 3
(精细化工), 2022, 39(3): 469-479. nanowire arrays grown directly on transparent conducting oxide
[4] KI S J, PARK Y, KIM J, et al. Facile preparation of tungsten oxide coated glass: Synthesis and photoelectrochemical properties[J]. Nano
doped TiO 2 photocatalysts using liquid phase plasma process for Letters, 2011, 11(1): 203-208.
enhanced degradation of diethyl phthalate[J]. Chemical Engineering [15] MORALES W, CASON M, AINA O, et al. Combustion synthesis
Journal, 2019, 377: 120087. and characterization of nanocrystalline WO 3[J]. Journal of the
[5] RHAMAN M M, GANGULIS, BERAS, et al. Visible-light American Chemical Society, 2008, 130(20): 6318-6319.
responsive novel WO 3/TiO 2 and Au loaded WO 3/TiO 2 nanocomposite [16] ZHANG Y, ZHOU J B, CAI W Q, et al. Enhanced photocatalytic
and wastewater remediation: Mechanistic inside and photocatalysis performance and degradation pathway of rhodamine B over
pathway[J]. Journal of Water Process Engineering, 2020, 36: 101256. hierarchical double-shelled zinc nickel oxide hollow sphere
[6] HAN X P, YAO B H, LI K Y, et al. Preparation and photocatalytic heterojunction[J]. Applied Surface Science, 2018, 430: 549-560.
performances of WO 3/TiO 2 composite nanofibers[J]. Journal of [17] BAO N Z, FENG X, YANG Z H, et al. Highly efficient liquid-phase
Chemistry, 2020. DOI: 10.1155/2020/2390486. photooxidation of an azo dye methyl orange over novel
[7] LEGHARI S A K, SAJJAD S, CHEN F, et al. WO 3/TiO 2 composite nanostructured porous titanate-based fiber of self-supported radially
with morphology change via hydrothermal template-free route as an aligned H 2Ti 8O 17•1.5H 2O nanorods[J]. Environmental Science &
efficient visible light photocatalyst[J]. Chemical Engineering Journal, Technology, 2004, 38(9): 2729-2736.
2011, 166(3): 906-915. [18] SHI Y Y, LUO L J, ZHANG Y F, et al. Synthesis and characterization
[8] YANG L X, XIAO Y, LIU S H, et al. Photocatalytic reduction of Cr of α/β-Bi 2O 3 with enhanced photocatalytic activity for 17α-
(Ⅵ) on WO 3 doped long TiO 2 nanotube arrays in the presence of ethynylestradiol[J]. Ceramics International, 2017, 43(10): 7627-7635.
citric acid[J]. Applied Catalysis B: Environmental, 2010, 94(1/2): [19] ZHANG S Q, ZHANG Z F, LI B, et al. Hierarchical Ag 3PO 4@
142-149. ZnIn 2S 4 nanoscoparium: An innovative Z-scheme photocatalyst for
[9] CHEN Z W, JIANG H, JIN W L, et al. Enhanced photocatalytic highly efficient and predictable tetracycline degradation[J]. Journal
performance over Bi 4Ti 3O 12 nanosheets with controllable size and of Colloid and Interface Science, 2021, 586: 708-718.
exposed {001} facets for rhodamine B degradation[J]. Applied [20] SHENAWI-KHALIL S, UVAROV V, KRITSMAN Y, et al. A new
Catalysis B: Environmental, 2016, 180: 698-706. family of BiO(Cl xBr 1−x) visible light sensitive photocatalysts[J].
[10] WANG D L, LI H P, DU N, et al. Space-confined synthesis of Catalysis Communications, 2011, 12(12): 1136-1141.
monolayer molybdenum disulfide using tetrathiomolybdate intercalated [21] ZHANG X Y, WANG X, CHAI J N, et al. Construction of novel
layered double hydroxide as precursor[J]. Journal of Colloid and symmetric double Z-scheme BiFeO 3/CuBi 2O 4/BaTiO 3 photocatalyst
Interface Science, 2019, 541: 183-191. with enhanced solar-light-driven photocatalytic performance for
[11] WANG D L, LI H P, DU N, et al. Single platinum atoms degradation of norfloxacin[J]. Applied Catalysis B: Environmental,
immobilized on monolayer tungsten trioxide nanosheets as an 2020, 272: 119017.
efficient electrocatalyst for hydrogen evolution reaction[J]. Advanced [22] XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic
Functional Materials, 2021, 31(23): 2009770. activity and stability of Z-scheme Ag 2CrO 4-GO composite
[12] MA Z Y, DENG L J, FAN G, et al. Hydrothermal synthesis of photocatalysts for organic pollutant degradation[J]. Applied Catalysis
p-C 3N 4/f-BiOBr composites with highly efficient degradation of B: Environmental, 2015, 164: 380-388.
(上接第 2455 页) [17] XU B W, HAN F L, PEI X Q, et al. Concise and efficient
[12] TU J, XU H, XIANG G F, et al. Rapid self-healing and tough self-healing cross-linked polyurethanes via the blocking/deblocking
polyurethane based on the synergy of multi-level hydrogen bonds reaction of oxime urethanes[J]. Industrial & Engineering Chemistry
and disulfide bonds for healing propellant microcracks[J]. Materials Research, 2021, 60(30): 11095-11105.
Chemistry Frontiers, 2022, 6(9): 1161-1171. [18] LEI Z Q, XIE P, RONG M Z, et al. Catalyst-free dynamic exchange
[13] RONG J C, ZHONG J, YAN W L, et al. Study on waterborne of aromatic Schiff base bonds and its application to self-healing and
self-healing polyurethane with dual dynamic units of quadruple remolding of crosslinked polymers[J]. Journal of Materials Chemistry
hydrogen bonding and disulfide bonds[J]. Polymer, 2021, 221: A, 2015, 3(39): 19662-19668.
123625. [19] CHANG K, JIA H, GU S Y. A transparent, highly stretchable,
[14] HU J, MO R B, SHENG X X, et al. A self-healing polyurethane self-healing polyurethane based on disulfide bonds[J]. European
elastomer with excellent mechanical properties based on phase-locked Polymer Journal, 2019, 112: 822-831.
dynamic imine bonds[J]. Polymer Chemistry, 2020, 11(14): 2585-2594. [20] HUANG H H, ZHOU W, ZHONG Z Y, et al. Self-antiglare
[15] FAN W H, JIN Y, SHI L J, et al. Developing visible-light-induced waterborne coating with superior mechanical robustness and highly
dynamic aromatic Schiff base bonds for room-temperature efficient room-temperature self-healing capability[J]. Progress in
self-healable and reprocessable waterborne polyurethanes with high Organic Coatings, 2020, 146: 105717.
mechanical properties[J]. Journal of Materials Chemistry A, 2020, [21] ZHANG Q (张桥). Synthesis and properties of novel double Schiff
8(14): 6757-6767. bases[D]. Urumqi: Xinjiang University (新疆大学), 2016.
[16] MIN J B, ZHOU Z X, WANG H N, et al. Room temperature [22] XIONG J (熊军), SUN F (孙芳), DU H G (杜洪光). Determination
self-healing and recyclable conductive composites for flexible of isocyanate group in polyurethane by acetone-di-n-butylamine
electronic devices based on imine reversible covalent bond[J]. titration[J]. Chinese Journal of Analysis Laboratory (分析试验室),
Journal of Alloys and Compounds, 2022, 894: 162433. 2007, (8): 73-76.