Page 30 - 《精细化工》2022年第12期
P. 30

·2396·                            精细化工   FINE CHEMICALS                                 第 39 卷

            化剂的开发更具得天独厚的优势,并且中国作为稀                                 Biomedical Materials, 2022, 17(1): 015007.
                                                               [12]  GUO Y, SHEM  M, SHI X.  Construction of  poly(amidoamine)
            土金属储量大国,也可以结合资源优势进行树枝状
                                                                   dendrimer/carbon dot nanohybrids for biomedical applications[J].
            稀土金属催化剂的开发,实现新型聚乙烯催化剂的                                 Macromolecular Bioscience, 2021, 21: 21007.
            行业领先。目前,中国树枝状过渡金属催化剂开发                             [13]  PATTERSON C M, BALACHABDER S B, GRANT I, et al. Design
                                                                   and optimisation of dendrimer-conjugated bcl-2/x L inhibitor, azd0466,
            的重点为进一步提高催化剂的催化活性以及拓宽催                                 with improved therapeutic index for cancer therapy[J]. Communications
            化产物品类,使其具有更高的实际应用价值。因此,                                Biology, 2021, 4(1): 1-12.
            可从以下方面开展进一步的研究:                                    [14]  CHEN S, HUANG S, LI  Y,  et al. Recent advances in epsilon-
                                                                   poly-l-lysine and l-lysine-based  dendrimer synthesis, modification,
                (1)通过改变树枝状过渡金属催化剂的负载配                              and biomedical applications[J]. Frontiers in Chemistry, 2021, 9:
            体类型和过渡金属活性中心,实现其对乙烯聚合的                                 659104.
                                                               [15]  SIANG T J, JALIL A A, HAMBALI H U, et al. Dendritic mesoporous
            可控性催化,增加产品品类,提高产品质量。                                   Ni/kcc-1 for partial oxidation of methane to syngas[J]. IOP Conference
                (2)对树枝状过渡金属催化剂催化乙烯聚合的                              Series: Materials Science and Engineering, 2020, 808(1): 012006.
            各项工艺参数、聚合机理、动力学因素进行深入研                             [16]  LIU Y, WANG Z, GUO N, et al. Polydopamine-encapsulated dendritic
                                                                   organosilica nanoparticles as amphiphilic platforms for highly efficient
            究,加大使用该类型催化剂生产聚乙烯应用中具有                                 heterogeneous catalysis in water[J]. Chinese Chemistry: English
            独立产权的生产工艺的研发,推动工业化进程。                                  Version, 2021, 39(7): 8-16.
                                                               [17]  SUI R, CHARPENTIER P A, MARRIOTT R A. Metal oxide-related
                (3)结合中国资源特点,发挥稀有金属储量丰                              dendritic structures: Self-assembly and applications for sensor,
            富的资源优势,进行新型树枝状稀土金属催化剂的                                 catalysis,  energy conversion and beyond[J]. Nanomaterials, 2021,
                                                                   11(7): 1686-1707.
            研发,力求在国内外的非茂金属催化剂研发中占据
                                                               [18]  CHENG Z Q, LI Z W,  XU J  H,  et al. Morphology-controlled
            优势地位。                                                  fabrication of large-scale dendritic silver nanostructures for catalysis
                                                                   and sers applications[J]. Nanoscale Research  Letters, 2020, 14(1):
            参考文献:                                                  89-94.
                                                               [19]  BUKOWSKA A,  BESTER K, PYTRL M,  et al. Polymer beads
            [1]   LI G J (李刚健),  ZHOU Z C (周子淳), ZHANG  R (张荣),  et al.
                 Research status of polyethylene catalyst[J]. Synthetic Materials   decorated with  dendritic systems as supports  for a3 coupling
                 Aging and Application (合成材料老化与应用), 2021, 50(2): 151-154.   catalysts[J]. Catalysis Letters, 2020, 151(2): 422-434.
            [2]   CAO Y, WU Y, TANG X, et al. Long-term efficiency for reducing   [20]  WU J S, LI J X, SHU N,  et al. A polyamidoamine (PAMAM)
                 entanglements of nascent polyethylene by a polystyrene-modified   derivative dendrimer with high loading capacity of TLR7/8 agonist
                 Ziegler-Natta catalyst[J]. Journal of Applied Polymer Science, 2022,   for improved cancer immunotherapy[J]. Nano Research, 2022, 15(1):
                 139(11): e51790.                                  510-518.
            [3]   LIU X, GUO W, FAN Z, et al. Ticl 4/MgCl 2/MCM-41 bi-supported   [21]  IZADI M, MARDANI H, ROGHANI-MAMAGANI H, et al. Effect
                                                                   of  poly(amidoamine) dendrimer-grafted silica nanoparticles and
                 Ziegler-Natta catalyst: Effects of catalyst composition  on ethylene/
                                                                   different chain extenders on thermal properties of epoxy-modified
                 1-hexene copolymerization[J]. Catalysts, 2021, 11(6): 1535.
                                                                   polyurethane composites[J]. Bulletin  of Materials  Science, 2021,
            [4]   SHEN C (沈冲),  YANG M F (杨盟飞), FENG B (冯彬),  et al.
                 Preparation and industrial application of  palladium catalyst for   44(3):199-211.
                 hydrogen peroxide in anthraquinone process[J]. Fine Chemicals (精  [22]  SHWETHA  R, NAGARAJU D H,  GEETHA  R,  et al. Dendritic
                 细化工), 2022,39(4): 746-751.                        ferroselite (FeSe 2)  with 2D carbon-based nanosheets  of  rGO and
            [5]   XING Y (刑宇), ZHAO C X (赵晨曦), JIA G P (贾高鹏), et al. Fe/   g-C 3N 4 as efficient catalysts for electrochemical hydrogen evolution[J].
                 K/Mg-O-Al catalyst for direct synthesis of light olefins from syngas   ACS Applied Energy Materials, 2020, 3(12): 1-10.
                 [J]. Fine Chemicals (精细化工), 2020, 37(5): 968-975.   [23]  GUO L, WANG Q, SHI Q, et al. Controlled synthesis of dendritic
            [6]   GRAGERT M M, TOMOV A K, BETTONVILL S, et al. Branched   ruthenium nanostructures under microwave irradiation and their
                 polyethylene biaryl group  4 metal  complexes as non-metallocene   catalytic properties for p-chloronitrobenzene hydrogenation[J]. Transition
                                                                   Metal Chemistry, 2020, 4(46): 37-47.
                 catalysts for polyethylene with long chain branching[J]. European
                                                               [24]  LAN T  Y,  ZHANG N, WANG J,  et al. Synthesis and ethylene
                 Journal of Inorganic Chemistry, 2020, 43(4): 1-6.
            [7]   TUAN H T, BROOKHART M, DAUGULIS O, et al. New neutral   polymerization reaction of dendritic titanium catalysts[J]. Designed
                 nickel and  palladium sandwich catalysts: Synthesis of  ultra-high   Monomers and Polymers, 2021, 24(1): 13-21.
                 molecular weight polyethylene (UHMWPE)  via highly controlled   [25]  SCHEJTMAN S, IRRANCA S M, IGARZABAL C, et al. Redefining
                 polymerization and mechanistic studies of chain propagation[J].   the chemistry of  super-macroporous materials: When dendritic
                 Journal of the American Chemical Society, 2020, 142(15): 7198-7206.   molecules  meet polymer  cryogels[J]. Polymer Chemistry, 2020,
            [8]   MISHRA A, PATIL H  R,  GUPTA  V,  et al. Progress in propylene   11(27): 13-27.
                 homo-and copolymers using advance transition metal catalyst   [26]  MEDLEY J B. Highly cross-inked polyethylene is the  new “gold
                 system[J]. New Journal of Chemistry, 2021, 45(6): 10577-10588.   standard” bearing material for total hip arthroplasty[J].  Biosurface
                                                                   and Biotribology, 2021, 7(11): 53-59.
            [9]   ARDOIN N, ASTRUC D. Cheminform abstract: Molecular trees
                                                               [27]  MULLER C, ACKERMAN L J, REEK J N H, et al. Site-isolation
                 from syntheses towards applications[J]. Cheminform, 2010, 27(12):
                 18-24.                                            effects in a dendritic nickel catalyst for the oligomerization of
            [10]  WICAKSONO G, DJORDJEVIC I, SHAH A H, et al. Photorheology   ethylene[J]. Journal of the American Chemical Society, 2004, 126(8):
                 of bioadhesive  dendrimer polycaprolactone composites[J]. Polymer   14960-14963.
                 Testing, 2019, 80:106099.                     [28]  BENITO J M, JESUS E D, MATA  F J,  et al. Mononuclear and
            [11]  MEMARIAN P, SOLOUK A, BAGHER Z, et al. Ionic conductive   dendritic nickel( Ⅱ ) complexes containing  N,N′-iminopyridine
                 nanocomposite based on  poly(l-lactic acid)/poly(amidoamine)   chelating ligands: Generation effects on the catalytic oligomerization
                 dendrimerelectrospun nanofibrous for biomedical  application[J].   and polymerization of ethylene[J]. Organometallics, 2006, 25(5):
   25   26   27   28   29   30   31   32   33   34   35