Page 161 - 《精细化工》2022年第3期
P. 161
第 3 期 卫学玲,等: 快速界面法制备 FeOOH@CoNi-LDH@NF 用于高效析氧 ·583·
2
曲线波动微弱,驱动 300 mA/cm 仅需 332 mV 过电 [10] WANG Y Y, QIAO M, LI Y F, et al. Tuning surface electronic
configuration of NiFe LDHs nanosheets by introducing cation
位,表明 Fe@CN-2 有良好的循环稳定性。不同电压 vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen
下监测 Fe@CN-2 连续 100 h OER 的耐久性,结果如 evolution reaction[J]. Small, 2018, 14(17): 1800136-1800141.
[11] LIU J, WANG J S, ZHANG B, et al. Hierarchical NiCo 2S 4@NiFe
图 9d 所示,在 1.34 V vs. RHE 的工作电压下电流密 LDH heterostructures supported on nickel goam for enhanced overall
water splitting activity[J]. ACS Applied Materials & Interfaces, 2017,
度保持率高达 95.3%;在 1.51 V vs. RHE 的工作电压
9(18): 15364-15372.
下电流密度保持率为 90.2%,说明该电极具有良好 [12] BODDULA R, XIE G C, GUO B D, et al. Role of transition-metal
electrocatalysts for oxygen evolution with Si-based photo anodes[J].
的耐久性。 Chinese Journal of Catalysis, 2021, 42(8): 1387-1394.
[13] WANG Z P, CHEN L, XU S D, et al. Cobalt vanadium layered
3 结论 double hydroxide/FeOOH heterostructure catalyst with strong
electron interactions for stable oxygen evolution performance[J].
Composites Communications, 2021, 27: 100780-100785.
通过水热法制备出 CoNi-LDH@NF 后,利用快 [14] CHENG J L, SHEN B S, SONG Y Y, et al. FeOOH decorated CoP
porous nanofiber for enhanced oxygen evolution activity[J]. Chemical
速界面法调节对前驱体的刻蚀时间,以实现对样品
Engineering Journal, 2022, 428: 131130-131136.
形貌的控制。当刻蚀 40 s 时,可制备出具有异质界 [15] JAMESH M I. Recent progress on earth abundant hydrogen
evolution reaction and oxygen evolution reaction bifunctional
面的棒状 FeOOH@CoNi-LDH@NF 催化剂,该界面 electrocatalyst for overall water splitting in alkaline media[J]. Journal
增强了催化剂与电解液的接触面积,增加了参与反 of Power Sources, 2016, 333: 213-236.
[16] WU L B, YU L, MCELHENNY B, et al. Rational design of core-
应的活性位点和对活性中间体的吸附,促进了电极 shell-structured CoP x@FeOOH for efficient seawater electrolysis[J].
表面气体的释放。该催化剂在 1 mol/L KOH 溶液的 Materials Research Bulletin, 2022, 145: 111549-111558.
[17] MA Q X, LI B L, HUANG F R, et al. Incorporating iron in nickel
OER 性能测试中表现出高效的 OER 性能,驱动 100 cobalt layered double hydroxide nanosheet arrays as efficient oxygen
2
mA/cm 的电流密度下仅需 291 mV 的过电势,Tafel evolution electrocatalyst[J]. Applied Catalysis B: Environmental,
2021, 294(5): 120256-120265.
斜率为 48 mV/dec。循环稳定性测试前后,析氧的 [18] GUO R, HE Y, YU T, et al. Enhanced oxygen evolution reaction
activity of flower-like FeOOH via the synergistic effect of sulfur[J].
过电势和阻抗增幅在 3%以内。1.34 和 1.51 V vs. Electrochimica Acta, 2019, 314(10): 684-693.
RHE 的电压下 100 h 恒电压耐久性测试结果显示, [19] PAN W, ZHANG M, GUI F Q, et al. Conductive Fe@Fe 2O 3/FeOOH
necklace-like nanowires of high electrochemical performances for a
电流密度保持率均在 90%以上。本工作采用快速界 supercapacitor application[J]. Chemical Engineering Journal, 2021,
面策略可以为提高过渡金属 LDH 催化剂制氢性能 450(15): 127587-127596.
[20] PENG L S, YANG N, YANG Y Q, et al. Atomic cation-vacancy
提供一定理论参考。 engineering of NiFe-layered double hydroxides for improved activity
and stability towards the oxygen evolution reaction[J]. Angewandte
参考文献: Chemie International Edition, 2021, 60(46): 24612-24619.
[21] BAO W W, XIAO L, ZHANG J J, et al. Interface engineering of
[1] CHEN L R (陈丽茹), TAO T X (陶庭先), LU X H (卢晓韩), et al. NiV-LDH@FeOOH heterostructures as high-performance
Synthesis of CoS 2/AOCF composites by coordination loading electrocatalysts for oxygen evolution reaction in alkine conditions[J].
method and its electrocatalytic hydrogen evolution performace[J]. Chemical Communications, 2020, 56(65): 9360-9363.
Fine Chemicals (精细化工), 2021, 38(5): 1014-1022. [22] WASALATHANTHRI R, JEFFREY S, AWNI R A, et al.
[2] UBAIDULLAH M, ENIZI A M, SHAIKH S, et al. Waste PET plastic Electrodeposited copper cobalt phosphide: A stable bifunctional
derived ZnO@NMC nanocomposite via MOF-5 construction for catalyst for both hydrogen and oxygen evolution reactions[J]. ACS
hydrogen and oxygen evolution reactions[J]. Journal of King Saud Sustainable Chemistry Engineering, 2019, 7(3): 3092-3100.
University Science, 2020, 32(4): 2397-2405. [23] LI M X, WANG H Y, ZHU W D, et al. RuNi nanoparticles embedded
[3] WU H F (吴浩飞), JIANG Z D (江志东), MA Z F (马紫峰). in N-doped carbon nanofibers as a robust bifunctional catalyst for
Preparation of Cu-Mn-Al spinel catalysts by co-precipitation method efficient overall water splitting[J]. Advanced Science, 2020, 7:
for hydrogen preparation from methanol steam reforming[J]. Fine 1901833-1901843.
Chemicals (精细化工), 2021, 38(10): 2081-2088. [24] SONG C Y, LIU Y, WANG Y C, et al. Highly efficient oxygen
[4] ZOU X Y, WEI X L, BAO W W, et al. Local electronic structure evolution and stable water splitting by coupling NiFe LDH with
modulation of NiVP@NiFeV-LDH electrode for high-efficiency metal phosphides[J]. Science China Materials, 2021, 64(7): 1662-1670.
oxygen evolution reaction[J]. International Journal of Hydrogen [25] LI J G, GU Y, SUN H C, et al. Engineering the coupling interface of
Energy, 2021, 46(64): 32385-32393. rhombic dodecahedral NiCoP/C@FeOOH nanocages toward
[5] MEGN Q D (孟齐德), LIU J X (刘进轩). Ultrathin metal-organic enhanced water oxidation[J]. Nanoscale, 2019, 11: 19959-19968.
framework nanosheets precursors for efficient electrocatalysis of [26] SHI Y, LI J, ZHANG B, et al. Tuning electronic structure of CoNi
oxygen evolution reaction[J]. Fine Chemicals (精细化工), 2021, LDHs via surface Fe doping for achieving effective oxygen evolution
38(9): 1860-1866. reaction[J]. Applied Surface Science, 2021, 565: 150506-150513.
[6] LIU H, LI X N, GE L B, et al. Accelerating hydrogen evolution in [27] ZHANG H, LI W, FENG X, et al. Interfacial FeOOH/CoO nanowires
Ru-doped FeCoP nanoarray with lattice distortion toward highly array improves electrocatalytic water splitting[J]. Journal of Solid
efficient overall water splitting[J]. Catalysis Science & Technology, State Chemistry, 2021, 298: 122156-122163.
2020, 10(24): 8314-8324. [28] TU Y Y (涂言言), ZHAO Z H (赵子涵), SUN Y Q (孙一强).
[7] XIE B Y (谢博尧), ZHANG J M (张纪梅), HAO S S (郝帅帅), et al. Synthesis and electrocatalytic oxygen evolution performances of
Research progress in layered double hydroxides catalystsfor oxygen FeOOH-Ni(OH) 2 composites[J]. Acta Materia Compositae Sinica (复
evolution reaction[J]. Journal of Materials Engineering (材料工程), 合材料学报), 2020, 37(8): 1944-1950.
2020, 48(1): 1-9. [29] ZHAO X H, XUE Z M, CHEN W J, et al. Ambient fast, large-scale
[8] FENG L X, LI A R, LI Y X, et al. A highly active CoFe layered synthesis of entropy-stabilized metal-organic framework nanosheets
double hydroxide for oxygen evolution reaction[J]. ChemPlus Chem, for electrocatalytic oxygen evolution[J]. Journal of Materials
2017, 82(3): 483-488. Chemistry A, 2019, 7(46): 26238-26242.
[9] YU M Z, ZHOU S, WANG Z Y, et al. Boosting electrocatalytic [30] ANANTHARAJ S, KUNDU S. Do the evaluation parameters reflect
oxygen evolution by synergistically coupling layered double intrinsic activity of electrocatalysts in electrochemical water
hydroxide with MXene[J]. Nano Energy, 2018, 44: 181-190. splitting[J]. ACS Energy Letter, 2019, 4: 1260-1264.