Page 161 - 《精细化工》2022年第3期
P. 161

第 3 期                卫学玲,等:  快速界面法制备 FeOOH@CoNi-LDH@NF 用于高效析氧                            ·583·


                                         2
            曲线波动微弱,驱动 300 mA/cm 仅需 332 mV 过电                   [10]  WANG Y  Y, QIAO M, LI Y F,  et al. Tuning surface electronic
                                                                   configuration of  NiFe LDHs nanosheets by introducing cation
            位,表明 Fe@CN-2 有良好的循环稳定性。不同电压                            vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen
            下监测 Fe@CN-2 连续 100 h OER 的耐久性,结果如                      evolution reaction[J]. Small, 2018, 14(17): 1800136-1800141.
                                                               [11]  LIU J, WANG J S, ZHANG  B,  et al. Hierarchical NiCo 2S 4@NiFe
            图 9d 所示,在 1.34 V vs. RHE 的工作电压下电流密                     LDH heterostructures supported on nickel goam for enhanced overall
                                                                   water splitting activity[J]. ACS Applied Materials & Interfaces, 2017,
            度保持率高达 95.3%;在 1.51 V vs. RHE 的工作电压
                                                                   9(18): 15364-15372.
            下电流密度保持率为 90.2%,说明该电极具有良好                          [12]  BODDULA R, XIE G C, GUO B D, et al. Role of transition-metal
                                                                   electrocatalysts for oxygen evolution with Si-based photo anodes[J].
            的耐久性。                                                  Chinese Journal of Catalysis, 2021, 42(8): 1387-1394.
                                                               [13]  WANG Z P, CHEN L, XU S D,  et al. Cobalt  vanadium layered
            3   结论                                                 double hydroxide/FeOOH heterostructure catalyst with strong
                                                                   electron interactions for stable oxygen evolution performance[J].
                                                                   Composites Communications, 2021, 27: 100780-100785.
                 通过水热法制备出 CoNi-LDH@NF 后,利用快                    [14]  CHENG J L, SHEN B S, SONG Y Y, et al. FeOOH decorated CoP
                                                                   porous nanofiber for enhanced oxygen evolution activity[J]. Chemical
            速界面法调节对前驱体的刻蚀时间,以实现对样品
                                                                   Engineering Journal, 2022, 428: 131130-131136.
            形貌的控制。当刻蚀 40 s 时,可制备出具有异质界                         [15]  JAMESH M I. Recent progress on earth abundant hydrogen
                                                                   evolution reaction and oxygen evolution  reaction  bifunctional
            面的棒状 FeOOH@CoNi-LDH@NF 催化剂,该界面                         electrocatalyst for overall water splitting in alkaline media[J]. Journal
            增强了催化剂与电解液的接触面积,增加了参与反                                 of Power Sources, 2016, 333: 213-236.
                                                               [16]  WU L B, YU L, MCELHENNY B, et al. Rational design of core-
            应的活性位点和对活性中间体的吸附,促进了电极                                 shell-structured CoP x@FeOOH for efficient seawater electrolysis[J].
            表面气体的释放。该催化剂在 1 mol/L  KOH 溶液的                         Materials Research Bulletin, 2022, 145: 111549-111558.
                                                               [17]  MA Q X, LI B L, HUANG F R, et al. Incorporating iron in nickel
            OER 性能测试中表现出高效的 OER 性能,驱动 100                          cobalt layered double hydroxide nanosheet arrays as efficient oxygen
                   2
            mA/cm 的电流密度下仅需 291 mV 的过电势,Tafel                       evolution electrocatalyst[J].  Applied  Catalysis B: Environmental,
                                                                   2021, 294(5): 120256-120265.
            斜率为 48 mV/dec。循环稳定性测试前后,析氧的                        [18]  GUO  R,  HE Y, YU T,  et al. Enhanced oxygen evolution reaction
                                                                   activity of flower-like FeOOH via the synergistic effect of sulfur[J].
            过电势和阻抗增幅在 3%以内。1.34 和 1.51 V  vs.                      Electrochimica Acta, 2019, 314(10): 684-693.
            RHE 的电压下 100 h 恒电压耐久性测试结果显示,                       [19]  PAN W, ZHANG M, GUI F Q, et al. Conductive Fe@Fe 2O 3/FeOOH
                                                                   necklace-like nanowires of high electrochemical performances for a
            电流密度保持率均在 90%以上。本工作采用快速界                               supercapacitor application[J]. Chemical Engineering Journal, 2021,
            面策略可以为提高过渡金属 LDH 催化剂制氢性能                               450(15): 127587-127596.
                                                               [20]  PENG L S, YANG N,  YANG Y Q,  et al. Atomic cation-vacancy
            提供一定理论参考。                                              engineering of NiFe-layered double hydroxides for improved activity
                                                                   and stability towards the oxygen evolution reaction[J]. Angewandte
            参考文献:                                                  Chemie International Edition, 2021, 60(46): 24612-24619.
                                                               [21]  BAO W W, XIAO L,  ZHANG J J,  et al. Interface engineering of
            [1]   CHEN L R (陈丽茹), TAO T X (陶庭先), LU X H (卢晓韩), et al.   NiV-LDH@FeOOH heterostructures as high-performance
                 Synthesis of CoS 2/AOCF composites by  coordination loading   electrocatalysts for oxygen evolution reaction in alkine conditions[J].
                 method and its electrocatalytic hydrogen evolution performace[J].   Chemical Communications, 2020, 56(65): 9360-9363.
                 Fine Chemicals (精细化工), 2021, 38(5): 1014-1022.   [22]  WASALATHANTHRI R, JEFFREY S, AWNI R A, et al.
            [2]   UBAIDULLAH M, ENIZI A M, SHAIKH S, et al. Waste PET plastic   Electrodeposited copper cobalt phosphide: A stable bifunctional
                 derived ZnO@NMC nanocomposite via MOF-5 construction for   catalyst for both hydrogen and oxygen evolution reactions[J]. ACS
                 hydrogen and oxygen evolution reactions[J]. Journal of King Saud   Sustainable Chemistry Engineering, 2019, 7(3): 3092-3100.
                 University Science, 2020, 32(4): 2397-2405.   [23]  LI M X, WANG H Y, ZHU W D, et al. RuNi nanoparticles embedded
            [3]   WU H F (吴浩飞),  JIANG Z D  (江志东), MA  Z F (马紫峰).   in N-doped carbon nanofibers as a robust bifunctional catalyst for
                 Preparation of Cu-Mn-Al spinel catalysts by co-precipitation method   efficient  overall water splitting[J].  Advanced Science, 2020,  7:
                 for hydrogen preparation from  methanol steam reforming[J]. Fine   1901833-1901843.
                 Chemicals (精细化工), 2021, 38(10): 2081-2088.    [24]  SONG C Y, LIU  Y, WANG Y C,  et al. Highly efficient oxygen
            [4]   ZOU X  Y, WEI X L, BAO W W,  et al. Local electronic structure   evolution and stable water splitting by coupling NiFe LDH with
                 modulation of NiVP@NiFeV-LDH  electrode for high-efficiency   metal phosphides[J]. Science China Materials, 2021, 64(7): 1662-1670.
                 oxygen evolution  reaction[J]. International Journal of  Hydrogen   [25]  LI J G, GU Y, SUN H C, et al. Engineering the coupling interface of
                 Energy, 2021, 46(64): 32385-32393.                rhombic dodecahedral NiCoP/C@FeOOH nanocages toward
            [5]   MEGN  Q D (孟齐德), LIU J X (刘进轩). Ultrathin metal-organic   enhanced water oxidation[J]. Nanoscale, 2019, 11: 19959-19968.
                 framework nanosheets precursors  for efficient electrocatalysis of   [26]  SHI Y, LI J, ZHANG B, et al. Tuning electronic structure of CoNi
                 oxygen evolution reaction[J]. Fine Chemicals (精细化工), 2021,   LDHs via surface Fe doping for achieving effective oxygen evolution
                 38(9): 1860-1866.                                 reaction[J]. Applied Surface Science, 2021, 565: 150506-150513.
            [6]   LIU H, LI X N, GE L B, et al. Accelerating hydrogen evolution in   [27]  ZHANG H, LI W, FENG X, et al. Interfacial FeOOH/CoO nanowires
                 Ru-doped FeCoP nanoarray with lattice distortion toward highly   array improves electrocatalytic  water  splitting[J]. Journal of Solid
                 efficient overall water splitting[J]. Catalysis Science & Technology,   State Chemistry, 2021, 298: 122156-122163.
                 2020, 10(24): 8314-8324.                      [28]  TU  Y Y (涂言言), ZHAO  Z H (赵子涵), SUN  Y Q  (孙一强).
            [7]   XIE B Y (谢博尧), ZHANG J M (张纪梅), HAO S S (郝帅帅), et al.   Synthesis and electrocatalytic oxygen evolution performances of
                 Research progress in layered double hydroxides catalystsfor oxygen   FeOOH-Ni(OH) 2 composites[J]. Acta Materia Compositae Sinica (复
                 evolution reaction[J]. Journal of Materials Engineering (材料工程),   合材料学报), 2020, 37(8): 1944-1950.
                 2020, 48(1): 1-9.                             [29]  ZHAO X H, XUE Z M, CHEN W J, et al. Ambient fast, large-scale
            [8]   FENG L X, LI A  R, LI  Y X,  et al. A highly active CoFe layered   synthesis of entropy-stabilized metal-organic framework nanosheets
                 double hydroxide for oxygen evolution reaction[J]. ChemPlus Chem,   for electrocatalytic oxygen evolution[J]. Journal of  Materials
                 2017, 82(3): 483-488.                             Chemistry A, 2019, 7(46): 26238-26242.
            [9]   YU M  Z, ZHOU  S, WANG  Z Y,  et al. Boosting electrocatalytic   [30]  ANANTHARAJ S, KUNDU S. Do the evaluation parameters reflect
                 oxygen evolution by synergistically  coupling layered double   intrinsic activity  of electrocatalysts in electrochemical water
                 hydroxide with MXene[J]. Nano Energy, 2018, 44: 181-190.   splitting[J]. ACS Energy Letter, 2019, 4: 1260-1264.
   156   157   158   159   160   161   162   163   164   165   166