Page 104 - 《精细化工》2022年第4期
P. 104

·740·                             精细化工   FINE CHEMICALS                                 第 39 卷

                                                               组,再负载 MoS 2 又进一步降低了 CdS 中电子-空穴
                                                               对的复合。因此,所制备的 CdS/RGO/ MoS 2 复合材
                                                               料光催化剂在可见光降解有机物领域和环境保护与
                                                               应用等方面是很有前途的材料。

                                                               参考文献:
                                                               [1]   GAO Y, LIN J  Y, ZHANG  Q  Z,  et al. Facile synthesis of
                                                                   heterostructured YVO 4/g-C 3N 4/Ag photocatalysts with  enhanced
                                                                   visible-light photocatalytic performance[J]. Applied Catalysis B:
                                                                   Environmental, 2018, 224: 586-593.
                                                               [2]   LIU S L (刘淑玲), YAN W (严薇), GUO J (郭洁), et al. Synthesis,
                                                                   characterization and photocatalytic properties of In 2O 3/CdS composites[J].
                                                                   Fine Chemicals (精细化工), 2018, 35(9): 1473-1477.
                                                               [3]   XU Z H, KIBRIA M G,  ALOTAIBI B,  et al. Towards  enhancing

                                                                   photocatalytic hydrogen generation: Which is more important, alloy
                     图 8   光催化降解 MO 的机理示意图                         synergistic effect or plasmonic effect[J]. Applied Catalysis B:
                                                                   Environmental, 2018, 221: 77-85.
            Fig. 8    Mechanism diagram  of photocatalytic degradation   [4]   ALI I,  GUPTA  V  K. Advances in water treatment by  adsorption
                   of MO                                           technology[J]. Nature Protocols, 2007, 1(6): 2661-2667.
                                                               [5]   QIU P X, YAO J H, CHEN H, et al. Enhanced visible-light photocatalytic
                 由图 8 可见,首先,CdS 吸收可见光后,在价带                         decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn 2S 4/g-C 3N 4
                                                                   photocatalyst[J]. Journal of Hazardous Materials, 2016, 317:158-168.
                                        –
                         [26]
            (VB=1.58 eV) 上产生电子(e ),电子吸收能量跃                     [6]   SUN Y G (孙亚光), ZHANG H Y (张含烟), MING T (明涛), et al.
            迁到导带(CB= 0.72 eV)       [26] 上,助催化剂 RGO 捕              Synthesis of ZnIn 2S 4/g-C 3N 4 nanocomposites with efficient photocatalytic
                                                                   H 2 generation activity by a simple hydrothermal method[J]. Chem J
            获电子,再转移到更低导带位置的 MoS 2 上(CB=0.65                        Chinese Universities (高等学校化学学报), 2021,42 (10): 3160-3166.
            eV)  [26] ,空穴留在 CdS 的价带上,实现电子-空穴                   [7]   GAO Y, XU B T, CHERIF M,et al. Atomic insights for Ag interstitial/
                                                                   substitutional doping into ZnIn 2S 4 nanoplates and intimate coupling
            对的快速分离,从而抑制了 CdS 光催化剂吸收可见                              with reduced graphene oxide for enhanced photocatalytic hydrogen
            光时产生的电子-空穴对的快速复合,由此更多的电                                production by water splitting[J]. Applied Catalysis B: Environmental,
                                                                   2020, 279: 119403.
                                                               [8]   GAO Y, QIAN K, XU  B T,  et al. Designing 2D-2D g-C 3N 4/Ag:
            子能够参与到光催化剂降解 MO 的过程中。MoS 2
                                                          –        ZnIn 2S 4 nanocomposites for the high-performance  conversion of
            导带上的电子可以与半导体表面的氧气反应形成·O 2
                                                                   sunlight energy into hydrogen fuel and the meaningful reduction of
                                                   +
            对有机物进行降解。而留在 CdS 价带上的 h 是良好                            pollution[J]. RSC Advances, 2020, 10 (54): 32652-32661.
                                                               [9]   YANG H, YANG  C, ZHANG N, et  al. Drastic promotion of the
            的氧化剂可以氧化吸附在半导体表面的有机物达到                                 photoreactivity of MOF ultrathin nanosheets towards hydrogen
            降解的作用。此外,由于 RGO 是良好的导体,可以                              production by deposition with CdS nanorods [J]. Applied Catalysis
                                                                   B: Environmental, 2020, 285: 119801.
                                               –
            作为电子捕获层直接捕获光生电子 e ,也可以在                            [10]  SHARMA P. High performance H 2O 2 production achieved by sulfur-
            CdS 和 MoS 2 之间充当桥梁作用,从而进一步促进光                          doped carbon on  CdS photocatalyst  via inhibiting reverse H 2O 2
                                                                   decomposition[J].  Applied Catalysis B: Environmental,  2020, 284:
            生载流子的有效分离,使得更多的光生载流子参与                                 119690.
            催化反应。并且复合材料形成时的费米能级拉平效                             [11]  WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric
                                                                   photocatalyst for  hydrogen production from water under visible
            应能够促进不同半导体之间载流子电子的扩散和转                                 light[J]. Nature Materials, 2009, 8(1): 76-80.
            移,从而有效提高催化活性             [25-27] 。                 [12]  LI S S, SUN J R, GUAN J Q. Strategies to improve electrocatalytic
                                                                   and photocatalytic performance of two-dimensional materials for
                                                                   hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021,
            3   结论                                                 42: 511-556.
                                                               [13]  JAMIL A, MUSTAFA F, ASLAM S, et al. Structural  and optical
                                                                   properties of thermally reduced graphene oxide for energy devices[J].
                 通过简单的水热法成功合成 CdS/RGO/MoS 2 复                      Chinese Physics B, 2017, 26(8): 086501.
            合材料。该制备方法成本低廉,操作简便且可控。                             [14]  COLINA-RUIZ R A, TOLENTINO-HERNANDEZ R V, GUARNEROS-
                                                                   AGUILAR C,  et al. Chemical bonding and electronic structure in
            水热法使得 RGO 和 MoS 2 两种助催化剂与 CdS 紧密                       CdS/GO and CdSSe/GO multilayer films[J]. The Journal of Physical
            地结合在一起,可以促进光生电子-空穴对快速分                                 Chemistry C, 2019, 123(22): 13918-13924.
                                                               [15]  ZHAO X L, GAO  W Q, LIU Q L, et al. Enhanced photo-induced
            离,从而显著提高催化剂的可见光降解 MO 速率和                               carrier separation of CdS/MoS 2 via micro-potential of Mo microsheet
            稳定性。降解实验结果表明,CdS/0.75% RGO/1.0%                        derived from electromagnetic induction[J]. Chemical  Engineering
                                                                   Journal, 2020, 404: 126972.
            MoS 2 表现出最佳的光催化降解活性,降解速率分别                         [16]  LIANG H J, HUA P, ZHOU Y F, et al. Fabrication of Cu/RGO/MoS 2
            是纯 CdS 和 MoS 2 的 11.3 倍和 18.6 倍。通过对催化                  nanohybrid with energetic visible-light response for degradation of
                                                                   rhodamine B[J]. Chinese Chemical Letters, 2019, 30: 2245-2248.
            机理进行分析,可以推测出光催化效率增强的原因:                            [17]  TANG Y J,  WANG Y,  WANG X L,  et al. Molybdenum disulfide/
            一方面是三元复合材料具有良好的光响应能力;另                                 nitrogen-doped  reduced graphene  oxide nanocomposite with enlarged
                                                                   interlayer spacing for electrocatalytic hydrogen evolution[J].
            一方面,RGO 作为电子受体和转运体在光催化材料                               Advanced Energy Materials, 2016, 6(12): 1600116.

            中能很好地传输电子,从而抑制光生电子-空穴的重                                                           (下转第 768 页)
   99   100   101   102   103   104   105   106   107   108   109