Page 104 - 《精细化工》2022年第4期
P. 104
·740· 精细化工 FINE CHEMICALS 第 39 卷
组,再负载 MoS 2 又进一步降低了 CdS 中电子-空穴
对的复合。因此,所制备的 CdS/RGO/ MoS 2 复合材
料光催化剂在可见光降解有机物领域和环境保护与
应用等方面是很有前途的材料。
参考文献:
[1] GAO Y, LIN J Y, ZHANG Q Z, et al. Facile synthesis of
heterostructured YVO 4/g-C 3N 4/Ag photocatalysts with enhanced
visible-light photocatalytic performance[J]. Applied Catalysis B:
Environmental, 2018, 224: 586-593.
[2] LIU S L (刘淑玲), YAN W (严薇), GUO J (郭洁), et al. Synthesis,
characterization and photocatalytic properties of In 2O 3/CdS composites[J].
Fine Chemicals (精细化工), 2018, 35(9): 1473-1477.
[3] XU Z H, KIBRIA M G, ALOTAIBI B, et al. Towards enhancing
photocatalytic hydrogen generation: Which is more important, alloy
图 8 光催化降解 MO 的机理示意图 synergistic effect or plasmonic effect[J]. Applied Catalysis B:
Environmental, 2018, 221: 77-85.
Fig. 8 Mechanism diagram of photocatalytic degradation [4] ALI I, GUPTA V K. Advances in water treatment by adsorption
of MO technology[J]. Nature Protocols, 2007, 1(6): 2661-2667.
[5] QIU P X, YAO J H, CHEN H, et al. Enhanced visible-light photocatalytic
由图 8 可见,首先,CdS 吸收可见光后,在价带 decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn 2S 4/g-C 3N 4
photocatalyst[J]. Journal of Hazardous Materials, 2016, 317:158-168.
–
[26]
(VB=1.58 eV) 上产生电子(e ),电子吸收能量跃 [6] SUN Y G (孙亚光), ZHANG H Y (张含烟), MING T (明涛), et al.
迁到导带(CB= 0.72 eV) [26] 上,助催化剂 RGO 捕 Synthesis of ZnIn 2S 4/g-C 3N 4 nanocomposites with efficient photocatalytic
H 2 generation activity by a simple hydrothermal method[J]. Chem J
获电子,再转移到更低导带位置的 MoS 2 上(CB=0.65 Chinese Universities (高等学校化学学报), 2021,42 (10): 3160-3166.
eV) [26] ,空穴留在 CdS 的价带上,实现电子-空穴 [7] GAO Y, XU B T, CHERIF M,et al. Atomic insights for Ag interstitial/
substitutional doping into ZnIn 2S 4 nanoplates and intimate coupling
对的快速分离,从而抑制了 CdS 光催化剂吸收可见 with reduced graphene oxide for enhanced photocatalytic hydrogen
光时产生的电子-空穴对的快速复合,由此更多的电 production by water splitting[J]. Applied Catalysis B: Environmental,
2020, 279: 119403.
[8] GAO Y, QIAN K, XU B T, et al. Designing 2D-2D g-C 3N 4/Ag:
子能够参与到光催化剂降解 MO 的过程中。MoS 2
– ZnIn 2S 4 nanocomposites for the high-performance conversion of
导带上的电子可以与半导体表面的氧气反应形成·O 2
sunlight energy into hydrogen fuel and the meaningful reduction of
+
对有机物进行降解。而留在 CdS 价带上的 h 是良好 pollution[J]. RSC Advances, 2020, 10 (54): 32652-32661.
[9] YANG H, YANG C, ZHANG N, et al. Drastic promotion of the
的氧化剂可以氧化吸附在半导体表面的有机物达到 photoreactivity of MOF ultrathin nanosheets towards hydrogen
降解的作用。此外,由于 RGO 是良好的导体,可以 production by deposition with CdS nanorods [J]. Applied Catalysis
B: Environmental, 2020, 285: 119801.
–
作为电子捕获层直接捕获光生电子 e ,也可以在 [10] SHARMA P. High performance H 2O 2 production achieved by sulfur-
CdS 和 MoS 2 之间充当桥梁作用,从而进一步促进光 doped carbon on CdS photocatalyst via inhibiting reverse H 2O 2
decomposition[J]. Applied Catalysis B: Environmental, 2020, 284:
生载流子的有效分离,使得更多的光生载流子参与 119690.
催化反应。并且复合材料形成时的费米能级拉平效 [11] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric
photocatalyst for hydrogen production from water under visible
应能够促进不同半导体之间载流子电子的扩散和转 light[J]. Nature Materials, 2009, 8(1): 76-80.
移,从而有效提高催化活性 [25-27] 。 [12] LI S S, SUN J R, GUAN J Q. Strategies to improve electrocatalytic
and photocatalytic performance of two-dimensional materials for
hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021,
3 结论 42: 511-556.
[13] JAMIL A, MUSTAFA F, ASLAM S, et al. Structural and optical
properties of thermally reduced graphene oxide for energy devices[J].
通过简单的水热法成功合成 CdS/RGO/MoS 2 复 Chinese Physics B, 2017, 26(8): 086501.
合材料。该制备方法成本低廉,操作简便且可控。 [14] COLINA-RUIZ R A, TOLENTINO-HERNANDEZ R V, GUARNEROS-
AGUILAR C, et al. Chemical bonding and electronic structure in
水热法使得 RGO 和 MoS 2 两种助催化剂与 CdS 紧密 CdS/GO and CdSSe/GO multilayer films[J]. The Journal of Physical
地结合在一起,可以促进光生电子-空穴对快速分 Chemistry C, 2019, 123(22): 13918-13924.
[15] ZHAO X L, GAO W Q, LIU Q L, et al. Enhanced photo-induced
离,从而显著提高催化剂的可见光降解 MO 速率和 carrier separation of CdS/MoS 2 via micro-potential of Mo microsheet
稳定性。降解实验结果表明,CdS/0.75% RGO/1.0% derived from electromagnetic induction[J]. Chemical Engineering
Journal, 2020, 404: 126972.
MoS 2 表现出最佳的光催化降解活性,降解速率分别 [16] LIANG H J, HUA P, ZHOU Y F, et al. Fabrication of Cu/RGO/MoS 2
是纯 CdS 和 MoS 2 的 11.3 倍和 18.6 倍。通过对催化 nanohybrid with energetic visible-light response for degradation of
rhodamine B[J]. Chinese Chemical Letters, 2019, 30: 2245-2248.
机理进行分析,可以推测出光催化效率增强的原因: [17] TANG Y J, WANG Y, WANG X L, et al. Molybdenum disulfide/
一方面是三元复合材料具有良好的光响应能力;另 nitrogen-doped reduced graphene oxide nanocomposite with enlarged
interlayer spacing for electrocatalytic hydrogen evolution[J].
一方面,RGO 作为电子受体和转运体在光催化材料 Advanced Energy Materials, 2016, 6(12): 1600116.
中能很好地传输电子,从而抑制光生电子-空穴的重 (下转第 768 页)