Page 153 - 《精细化工》2022年第4期
P. 153
第 4 期 张嘉玉,等: 氟代苯腈类添加剂对锂离子电池性能的影响 ·789·
键的伸缩振动 [28-29] ,这是电解质分解的结果。氟代 temperature electrolytic liquid system for lithium ion battery[D].
–1
苯腈类添加剂在 2131 cm 处有一个宽的新峰,对应于 Qinghai: University of Chinese Academy of Sciences (中国科学院
大学), 2018.
–1
—C≡≡N 键的伸缩振动,1165 cm 为—CF 3 的伸缩振动 [8] LEE Y M, NAM K M, HWANG E H, et al. Interfacial origin of
performance improvement and fade for 4.6 V LiNi 0.5Co 0.2Mn 0.3O 2
吸收峰,结果表明,添加剂的分解产物并入表面膜。 battery cathodes[J]. Journal of Physical Chemistry, 2014, 118(20):
10631-10639.
根据 FTIR 和 SEM 测试结果,氟代苯腈类添加 [9] LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface
剂能形成 CEI 膜。苯环与氰基的 C—C 键的键长缩 films simultaneously on anode and cathode for high energy batteries[J].
Advanced Energy Materials, 2018, 8(22): 1-16.
短以及三氟甲基与苯的 C—C 键的键长增加,氧化 [10] XU N B, SHI J W, LIU J P, et al. Research progress of fluorine-
后的断裂反应生成 Ph—C≡≡N 阳离子和—CF 3 自由 containing electrolyte additives for lithium ion batteries[J]. Journal of
Power Sources Advances, 2021, 7: 1379-1394.
基,阳离子从周围产生新自由基的溶剂中获得电子, [11] XU M Q, LIU Y L, LI B, et al. Tris(pentafluorophenyl) phosphine:
An electrolyte additive for high voltage Li-ion batteries[J].
终止并沉积在钴酸锂电极表面上形成表面膜,提高 Electrochemistry Communications, 2012, 18: 123-126.
了锂离子电池的电化学性能稳定。4-TB 的电化学性 [12] ZHENG X Z, TAO H, YING P, et al. Enhancing the high voltage
cycling performance of LiNi 1/3Co 1/3Mn 1/3O 2/graphite batteries using
能优于 2-TB 和 3-TB,是由于苯腈上的碳原子以三 alkyl 3,3,3-trifluoropropanoate as an electrolyte additive[J]. ACS
键的形式与电负性大的氮原子相连,与苯环形成吸 Applied Materials, 2017, 9(22): 18758-18765.
[13] ZHAO W M (赵卫民). Study on the functional electrolyte additives
电子的 - 共轭结构,对位电荷密度增加,活性提 for Li ion batteries and their working mechanism[D]. Xiamen:
高。当苯环上氰基与间位—CF 3 结合以后, 络合物 Xiamen University (厦门大学), 2019.
[14] HUANG T, ZHENG X Z, FANG G F, et al. (4-Methoxy)-phenoxy
稳定性提高,反应活性降低,生成的—C≡≡N 阳离子 pentafluorocyclotriphosphazene as a novel flame retardant and
overcharge protection additive for lithium-ion batteries[J]. RSC Advances,
和—CF 3 自由基减少,CEI 膜不均匀,从而使锂离子 2017, 7(75): 47775-47780.
电池稳定性最低。 [15] ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted
ethylene carbonates: Novel electrolyte additives for high-voltage
lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 184-191.
3 结论 [16] LIU Y J (刘颖杰), HAN Y H (韩莹徽), LIN L Q (林立青), et al.
Research progress of polyfluorinated alkylation reaction catalyzed by
electrochemistry[J]. Chinese Journal of Organic Chemistry (有机化
在基础电解液中加入等量的氟代苯腈类添加剂 学), 2021, 41: 934-946.
2-TB、3-TB、4-TB,对其进行理论计算、电化学性 [17] PAN F (潘菲), SHI Z J (施章杰). Transition metals catalyze
trifluoromethylation of C—H bonds[J]. Acta Chimica Sinica (化学学
能测试及充放电后电极表面分析,研究结果表明, 报), 2012, 70: 1679-1681.
[18] JIA W D (贾炜冬), WANG S B (王少波), LUO J Z (罗建志).
氟代苯腈类添加剂可在电极表面形成一层致密、均 Research progress in the production and application of
匀的 CEI 膜,有效保护了电极材料,改善了电池的 bitrifluorometalesulfonimide[J]. Chinese Journal of Power Sources
(电源技术), 2016, 4: 918-920.
电化学性能,提高了电池的稳定性,尤其是两个强 [19] FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by
的吸电子基处于对位的 4-TB 比邻、间位的 2-TB、 fluorinated electrolytes with non-polar solvents[J]. Nature Energy,
2019, 4(10): 882-890.
3-TB 及碳酸酯溶剂更易氧化分解,并在电极表面形 [20] JUNG H M, PARK S H, JEON J, et al. Fluoropropane sultone as an
SEI-forming additive that outperforms vinylene carbonate[J]. Journal
成了 15.0~40.0 nm 厚度电解质保护膜,抑制了后续 of Materials Chemistry A, 2013, 1(38): 11975-11981.
电解液的氧化分解,界面传输电阻降低至 61.63 Ω, [21] CHEN S Y, WANG Z X, ZHAO H L, et al. A novel flame retardant
and film-forming electrolyte additive for lithium ion batteries[J].
循环 30 圈后的放电比容量提高至 126.8 mA·h/g。 Journal of Power Sources, 2009, 187(1): 229-232.
因此,氟代苯腈类添加剂作为电解液添加剂具 [22] HUANG W N, XING L D, WANG Y T, et al. 4-(Trifluoromethyl)-
benzonitrile: A novel electrolyte additive for lithium nickel manganese
有较好的应用前景,将进一步促进锂离子电池多功 oxide cathode of high voltage lithium ion battery[J]. Journal of
Power Sources, 2014, 267: 560-565.
能电解质添加剂的发展。 [23] TIAN L, CHEN F W. Multiwfn: A multifunctional wavefunction
analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
参考文献: [24] HAN Y M (韩亚敏). Effect of electrolyte additives on electrochemical
performance of high Ni NCM811[D]. Lanzhou: Lanzhou University
[1] YANG S J (杨世杰), XU X Q (徐向群), CHENG X B (程新兵), et of Technology (兰州理工大学), 2020.
al. Columnar lithium metal deposits: Effects of electrolyte additives[J]. [25] LI Z J (李昭娟), WANG P (王鹏), ZHAO D N (赵冬妮), et al.
Acta Physico-Chimica Sinica (物理化学学报), 2021, 37: 136-143. Application of quantum chemical calculation in electrolyte additives
[2] ZHU J F (朱军峰), YAN M M (闫萌萌), ZHU T (朱婷) , et al. for lithium batteries[J]. Chinese Journal of Power Sources (电源技
Preparation and electrochemical properties of PTAm-GO anode 术), 2019, 43(3): 1230-1232.
material for lithium ion batteries[J]. Fine Chemicals (精细化工), [26] LIN S S, HUA H M, LI Z S, et al. Functional localized high-
2021, 38(11): 2341-2346. concentration ether-based electrolyte for stabilizing high-voltage lithium-
[3] CHENG X B (程新兵), ZHANG Q (张强). Dendrite growth metal battery[J]. ACS Applied Materials, 2020, 12(30): 33710-33718.
mechanism and inhibition method of lithium metal[J]. Progress in [27] ZHENG J M, XIAO J, GU M, et al. Interface modifications by anion
Chemistry (化学进展), 2018, 30(1): 59-80. receptors for high energy lithium ion batteries[J]. Journal of Power
[4] WANG C Y (王翠英), ZHANG S L (赵胜亮), ZHU G M (朱光明), Sources, 2014, 250: 313-318.
et al. Research progress of electrolyte for lithium ion battery[J]. [28] MORIGAKI K I, OHTA A. Analysis of the surface of lithium in
Journal of Electrochemistry (电化学), 2002, 8: 125-133. organic electrolyte by atomic force microscopy Fourier transform
[5] XIA L (夏兰), YU L P (余林颇), HU D (胡笛), et al. Research infrared spectroscopy and scanning auger electron microscopy[J].
progress of high voltage and flame resistant electrolyte for lithium Journal of Power Sources, 1998, 76(2): 159-166.
ion battery[J]. Acta Chimica Sinica (化学学报), 2017, 75: 1183-1195. [29] TARIQ F, YUFIT V, KISHIMOTO M, et al. Three-dimensional high
[6] XIAO L F (肖利芬). Research on some basic problems of lithium ion resolution X-ray imaging and quantification of lithium ion battery
battery application[D]. Wuhan: Wuhan University (武汉大学), 2003. mesocarbon microbead anodes[J]. Journal of Power Sources, 2014,
[7] ZHANG L J (张丽娟). Construction and performance study of wide 248(4): 1014-1020.