Page 153 - 《精细化工》2022年第4期
P. 153

第 4 期                     张嘉玉,等:  氟代苯腈类添加剂对锂离子电池性能的影响                                    ·789·


            键的伸缩振动       [28-29] ,这是电解质分解的结果。氟代                    temperature electrolytic liquid system for lithium ion battery[D].
                                  –1
            苯腈类添加剂在 2131 cm 处有一个宽的新峰,对应于                           Qinghai: University of Chinese Academy of Sciences (中国科学院
                                                                   大学), 2018.
                                        –1
            —C≡≡N 键的伸缩振动,1165 cm 为—CF 3 的伸缩振动                  [8]   LEE Y M, NAM  K M, HWANG E  H,  et al. Interfacial origin of
                                                                   performance improvement and fade for 4.6 V LiNi 0.5Co 0.2Mn 0.3O 2
            吸收峰,结果表明,添加剂的分解产物并入表面膜。                                battery cathodes[J]. Journal of Physical Chemistry, 2014, 118(20):
                                                                   10631-10639.
                 根据 FTIR 和 SEM 测试结果,氟代苯腈类添加                    [9]   LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface
            剂能形成 CEI 膜。苯环与氰基的 C—C 键的键长缩                            films simultaneously on anode and cathode for high energy batteries[J].
                                                                   Advanced Energy Materials, 2018, 8(22): 1-16.
            短以及三氟甲基与苯的 C—C 键的键长增加,氧化                           [10]  XU N  B, SHI J W, LIU J P,  et al. Research progress of fluorine-
            后的断裂反应生成 Ph—C≡≡N 阳离子和—CF 3 自由                          containing electrolyte additives for lithium ion batteries[J]. Journal of
                                                                   Power Sources Advances, 2021, 7: 1379-1394.
            基,阳离子从周围产生新自由基的溶剂中获得电子,                            [11]  XU M Q, LIU Y L, LI B, et al. Tris(pentafluorophenyl) phosphine:
                                                                   An electrolyte additive for  high  voltage Li-ion  batteries[J].
            终止并沉积在钴酸锂电极表面上形成表面膜,提高                                 Electrochemistry Communications, 2012, 18: 123-126.
            了锂离子电池的电化学性能稳定。4-TB 的电化学性                          [12]  ZHENG X  Z,  TAO H, YING P,  et al. Enhancing the high voltage
                                                                   cycling performance of LiNi 1/3Co 1/3Mn 1/3O 2/graphite batteries using
            能优于 2-TB 和 3-TB,是由于苯腈上的碳原子以三                           alkyl 3,3,3-trifluoropropanoate as an electrolyte additive[J]. ACS
            键的形式与电负性大的氮原子相连,与苯环形成吸                                 Applied Materials, 2017, 9(22): 18758-18765.
                                                               [13]  ZHAO W M (赵卫民). Study on the functional electrolyte additives
            电子的 - 共轭结构,对位电荷密度增加,活性提                              for Li ion batteries and their working mechanism[D]. Xiamen:
            高。当苯环上氰基与间位—CF 3 结合以后, 络合物                            Xiamen University (厦门大学), 2019.
                                                               [14]  HUANG T, ZHENG X Z, FANG G F, et al. (4-Methoxy)-phenoxy
            稳定性提高,反应活性降低,生成的—C≡≡N 阳离子                              pentafluorocyclotriphosphazene as a novel flame retardant and
                                                                   overcharge protection additive for lithium-ion batteries[J]. RSC Advances,
            和—CF 3 自由基减少,CEI 膜不均匀,从而使锂离子                           2017, 7(75): 47775-47780.
            电池稳定性最低。                                           [15]  ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted
                                                                   ethylene carbonates: Novel electrolyte additives for high-voltage
                                                                   lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 184-191.
            3   结论                                             [16]  LIU Y J (刘颖杰), HAN Y H (韩莹徽), LIN  L Q (林立青), et al.
                                                                   Research progress of polyfluorinated alkylation reaction catalyzed by
                                                                   electrochemistry[J]. Chinese Journal of Organic Chemistry (有机化
                 在基础电解液中加入等量的氟代苯腈类添加剂                              学), 2021, 41: 934-946.
            2-TB、3-TB、4-TB,对其进行理论计算、电化学性                       [17]  PAN F (潘菲), SHI Z J (施章杰).  Transition metals catalyze
                                                                   trifluoromethylation of C—H bonds[J]. Acta Chimica Sinica (化学学
            能测试及充放电后电极表面分析,研究结果表明,                                 报), 2012, 70: 1679-1681.
                                                               [18]  JIA W D (贾炜冬), WANG S B (王少波), LUO J  Z (罗建志).
            氟代苯腈类添加剂可在电极表面形成一层致密、均                                 Research progress in the production and application of
            匀的 CEI 膜,有效保护了电极材料,改善了电池的                              bitrifluorometalesulfonimide[J]. Chinese Journal of Power Sources
                                                                   (电源技术), 2016, 4: 918-920.
            电化学性能,提高了电池的稳定性,尤其是两个强                             [19]  FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by
            的吸电子基处于对位的 4-TB 比邻、间位的 2-TB、                           fluorinated electrolytes with non-polar solvents[J]. Nature Energy,
                                                                   2019, 4(10): 882-890.
            3-TB 及碳酸酯溶剂更易氧化分解,并在电极表面形                          [20]  JUNG H M, PARK S H, JEON J, et al. Fluoropropane sultone as an
                                                                   SEI-forming additive that outperforms vinylene carbonate[J]. Journal
            成了 15.0~40.0 nm 厚度电解质保护膜,抑制了后续                         of Materials Chemistry A, 2013, 1(38): 11975-11981.
            电解液的氧化分解,界面传输电阻降低至 61.63 Ω,                        [21]  CHEN S Y, WANG Z X, ZHAO H L, et al. A novel flame retardant
                                                                   and film-forming  electrolyte additive for lithium ion batteries[J].
            循环 30 圈后的放电比容量提高至 126.8 mA·h/g。                        Journal of Power Sources, 2009, 187(1): 229-232.
                 因此,氟代苯腈类添加剂作为电解液添加剂具                          [22]  HUANG W N, XING L D, WANG Y T, et al. 4-(Trifluoromethyl)-
                                                                   benzonitrile: A novel electrolyte additive for lithium nickel manganese
            有较好的应用前景,将进一步促进锂离子电池多功                                 oxide cathode of high voltage lithium ion battery[J].  Journal of
                                                                   Power Sources, 2014, 267: 560-565.
            能电解质添加剂的发展。                                        [23]  TIAN L, CHEN F W. Multiwfn:  A multifunctional wavefunction
                                                                   analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
            参考文献:                                              [24]  HAN Y M (韩亚敏). Effect of electrolyte additives on electrochemical
                                                                   performance of high Ni NCM811[D]. Lanzhou: Lanzhou University
            [1]   YANG S J (杨世杰), XU X Q (徐向群), CHENG X B (程新兵), et   of Technology (兰州理工大学), 2020.
                 al. Columnar lithium metal deposits: Effects of electrolyte additives[J].   [25]  LI Z J (李昭娟),  WANG P (王鹏),    ZHAO D N (赵冬妮),  et al.
                 Acta Physico-Chimica Sinica (物理化学学报), 2021, 37: 136-143.   Application of quantum chemical calculation in electrolyte additives
            [2]   ZHU J F (朱军峰), YAN M  M (闫萌萌), ZHU T (朱婷) ,  et al.   for lithium batteries[J]. Chinese Journal of Power Sources (电源技
                 Preparation and electrochemical properties of PTAm-GO anode   术), 2019, 43(3): 1230-1232.
                 material for lithium ion batteries[J]. Fine Chemicals (精细化工),   [26]  LIN S S, HUA H M, LI Z S,  et al. Functional localized high-
                 2021, 38(11): 2341-2346.                          concentration ether-based electrolyte for stabilizing high-voltage lithium-
            [3]   CHENG X B (程新兵), ZHANG Q (张强). Dendrite growth   metal battery[J]. ACS Applied Materials, 2020, 12(30): 33710-33718.
                 mechanism and inhibition method of lithium  metal[J]. Progress in   [27]  ZHENG J M, XIAO J, GU M, et al. Interface modifications by anion
                 Chemistry (化学进展), 2018, 30(1): 59-80.             receptors for high energy lithium ion batteries[J]. Journal of Power
            [4]   WANG C Y (王翠英), ZHANG S L (赵胜亮), ZHU G M (朱光明),   Sources, 2014, 250: 313-318.
                 et al. Research progress of electrolyte for lithium ion battery[J].   [28]  MORIGAKI K I,  OHTA  A. Analysis of the surface of lithium in
                 Journal of Electrochemistry (电化学), 2002, 8: 125-133.   organic electrolyte  by atomic force  microscopy Fourier transform
            [5]   XIA L (夏兰),  YU L P (余林颇), HU D (胡笛),  et al. Research   infrared spectroscopy and scanning auger electron microscopy[J].
                 progress of high voltage and flame resistant electrolyte for lithium   Journal of Power Sources, 1998, 76(2): 159-166.
                 ion battery[J]. Acta Chimica Sinica (化学学报), 2017, 75: 1183-1195.   [29]  TARIQ F, YUFIT V, KISHIMOTO M, et al. Three-dimensional high
            [6]   XIAO L F (肖利芬). Research on some basic problems of lithium ion   resolution X-ray imaging and  quantification of lithium ion battery
                 battery application[D]. Wuhan: Wuhan University (武汉大学), 2003.   mesocarbon microbead  anodes[J]. Journal of Power Sources, 2014,
            [7]   ZHANG L J (张丽娟). Construction and performance study of wide   248(4): 1014-1020.
   148   149   150   151   152   153   154   155   156   157   158