Page 191 - 《精细化工》2022年第4期
P. 191
第 4 期 胡诗越,等: 湿式催化氧化法处理高浓度高盐毒死蜱废水 ·827·
Research progress on degradation of chlorpyrifos by microbial- sites for the total oxidation of toluene by CuOCeO 2/Al 2O 3[J]. Journal
physicochemical coupling method[J]. Water Resources Protection (水 of Catalysis, 2012, 295: 91-103.
资源保护), 2021, 37(2): 15-20,42. [25] ZHOU Y B (周衍波). Preparation and wet oxidation performance of
[11] MENG Q L (孟琪莉), SUN C (孙冲). Research progress of application the multicomponent loading catalysts[D]. Anshan: University of
of advanced oxidation technology in hard-degradable industrial organic Science and Technology Liaoning (辽宁科技大学), 2016.
wastewater treatment[J]. Industrial Water & Wastewater (工业用水与 [26] JIN T (金婷), ZHU T Y (朱廷钰), YE M (叶猛), et al. Physical and
废水), 2021, 52(3): 1-5,13. chemical properties of circulating fluidized bed sintering flue gas
[12] DA COSTA P R F, DA SILVA D R, MARTÍNEZ-HUITLE C A, et al. desulfurization ash[J]. Journal of Beijing University of Chemical
Fuel station effluent treatment by electrochemical technology[J]. Technology(Natural Science) (北京化工大学学报: 自然科学版),
Journal of Electroanalytical Chemistry, 2016, 763: 97-103. 2010, 37(6): 35-40.
[13] CHEN L (陈蕾), WANG Z (王郑). Application of electrochemical [27] YAN C Y (闫春燕), YI W T (伊文涛), MA P H (马培华), et al.
advanced oxidation processes in industrial wastewater treatment[J]. Synthesis and characterization of hydrous ceria with its adsorption
Applied Chemical Industry (应用化工), 2019, 48(2): 434-437,443. property for Boron[J]. Journal of the Chinese Rare Earth Society (中
[14] KAISSOUNI F, BRAHMI R, ZBAIR M, et al. Catalytic wet air 国稀土学报), 2008, 26(3): 302-306.
oxidation of high BPA concentration over iron-based catalyst supported [28] DIAO G Q (刁贵强), GUO X Z (郭娴梓), FENG K J (封科军), et
on orthophosphate[J]. Environmental Science and Pollution Research, al. Study on the preparation and electrochemical properties of iron
2020, 27(26): 32533-32543. oxide/manganese oxide composite anode materials[J]. Journal of
[15] TAO H X (陶海祥), MAO B (毛兵), JIANG H Y (江海云), et al. Huizhou University (惠州学院学报), 2018, 38(3): 9-14.
Degradation of landfill leachate concentrate by catalytic wet air [29] DENG T T (邓天天), LI H S (李晗晟), LIU Q Y (刘千源), et al.
oxidation on Ru/TiO 2 catalyst[J]. Industrial Water Treatment (工业水 Preparation of CTS@Nano-Fe 3O 4 composite microspheres and
处理), 2021, 41(9): 111-116. adsorption characteristics of As (Ⅲ) in water[J]. Environmental
[16] MA J C (马建超), GUO J M (郭精茂), REN K W (任凯文), et al. Science & Technology (环境科学与技术), 2021, 44(6): 84-90.
Catalytic wet oxidation degradation of coking wastewater[J]. Fine [30] JIA Q Q (贾倩倩). Preparation of cerium oxide composite material
Chemicals (精细化工), 2020, 37(10): 2112-2119. and its photocatalytic performance[D]. Lanzhou: Northwest Normal
[17] FAN X (范鑫), LIN Q (林倩), PAN H Y (潘红艳), et al. Study on University (西北师范大学), 2021.
catalytic performance of vanadium catalyst prepared by ultrasound [31] SONG S Y (宋思扬), WU D (吴丹), ZHAO H X (赵焕新), et al.
impregnation for sulfur dioxide oxidation[J]. Applied Chemical Fabrication of Co-FeOOH/g-C 3N 4 composite and its catalytic
Industry (应用化工), 2019, 48(7): 1629-1634. performance onheterogeneous photo-Fenton[J]. Chinese Journal of
[18] CHEN Z J (陈周杰), MA X Q (马晓青). Determination of high Environmental Engineering (环境工程学报), 2020, 14(12): 3262-3269.
chlorine and low chemical oxygen demand (COD Cr) by silver salt [32] BAO G F (包国峰), CAI W F (蔡旺锋), WANG Y (王燕). Removal
precipitation dichromate method[J]. Journal of Qinghai Environment of phenol by heterogeneous electro-Fenton with iron/active carbon
(青海环境), 2021, 31(2): 93-94. catalyst[J]. Chinese Journal of Environmental Engineering (环境工
[19] CHEN Y (陈燕), BI J P (毕军平), LIU P (刘沛), et al. Determination 程学报), 2020, 14(12): 3280-3289.
of COD in high chlorine waster by rapid digestion spectrophotometry[J]. [33] BAI Y L (白玉玲). Screening and degradation characteristics of
Analytical Instrumentation (分析仪器), 2021, (3): 65-69. pyridine-degrading bacteria[D]. Xiangtan: Xiangtan University (湘潭
[20] WANG L (王磊), CHENG X X (成先雄), LIAN J F (连军锋), et al. 大学), 2020.
Degradation of azo dye by catalyzed persulfate with spinel c-CuFe 2O 4[J]. [34] WANG C ( 王璨 ). Research on the treatment of chlorpyrifos
Fine Chemicals (精细化工), 2021, 38(10): 2117-2124. wasterwater by electro-catalysis & electric flocculation[D]. Nanjing:
[21] WAN Z H (万志豪), JIAO T T (焦婷婷), YANG Y M (杨伊敏), Nanjing University of Aeronautics and Astronautics (南京航空航天大
et al. Degradation of salicyl hydroxamic acid by photolysis and 学), 2016.
UV/K 2S 2O 8[J]. Environmental Science & Technology (环境科学与 [35] KONG C C (孔聪聪). Study on the technology and mechanism of
技术), 2021, 44(5): 83-89. ultrasonic electrochemical degradation of chlorpyrifos[D]. Changzhou:
[22] ZHANG B Y (张斌阳), LI D Y (李东亚), XU H M (徐海明), et al. Changzhou University (常州大学), 2021.
Degradation of printing and dyeing wastewater by synergistic [36] WU YUN D L (乌云达来), HAO J X (郝建雄), LIU H J (刘海杰).
activated NaClO-PMS or NaClO-O 3[J]. Fine Chemicals (精细化工), Study of the removal chlorpyrifos in apples and the degradation
2019, 36(5): 979-983. pathway[J]. Scienceand Technology of Food Industry (食品工业科技),
[23] DAI Q, HAO H, YU Z, et al. Catalysis oxidation of 1,2- 2021, 42(17): 85-93.
dichloroethane and ethyl acetate over ceria nanocrystals with well- [37] YANG Q (杨倩). Study of catalytic wet peroxide oxidation and
defined crystal planes[J]. Applied Catalysis B Environmental, 2012, biological united treatment of 3,5,6-trichloropyridin-2-ol simulated
117/118: 360-368. wastewater[D]. Nanjing: Nanjing Agricultural University (南京农业大
[24] MENON U, POELMAN H, BLIZNUK V, et al. Nature of the active 学), 2013.
(上接第 818 页) [27] NURMI J T, TRATNYEK P G, SARATHY V, et al. Characterization
[23] TUFENKJI N, ELIMELECH M. Correlation equation for predicting and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry,
single-collector efficiency in physicochemical filtration in saturated and kinetics[J]. Environmental Science & Technology, 2005, 39(5):
porous media[J]. Environmental Science & Technology, 2004, 38(2): 1221-1230.
529-536. [28] LIU R L, SHI Y F, WAN Y, et al. Triconstituent co-assembly to
[24] ZHAN J, ZHENG T, PIRINGER G, et al. Transport characteristics of ordered mesostructured polymer-silica and carbon-silica nanocomposites
nanoscale functional zerovalent iron/silica composites for in situ and large-pore mesoporous carbons with high surface areas[J].
remediation of trichloroethylene[J]. Environmental Science & Journal of the American Chemical Society, 2006, 128(35): 11652.
Technology, 2008, 42(23): 8871-8876. [29] MOLDAY R S, MACKENZIE D. Immunospecific ferromagnetic
[25] SCHRICK B, HYDUTSKY B W, BLOUGH J L, et al. Delivery iron-dextran reagents for the labeling and magnetic separation of
vehicles for zerovalent metal nanoparticles in soil and groundwater[J]. cells[J]. Journal of Immunological Methods, 1982, 52(3): 353-367.
Chemistry of Materials, 2004, 16(11): 2187-2193. [30] QIN X F (秦小凤),CAO J Z (曹嘉真),WANG X L (汪小莉), et al.
[26] CHENG X L (程相乐). Preparation of expanded graphite-activated Nanoscale zero valent iron-based optimization system and their
carbon composites and its adsorption performance for phenol[D]. application in environmental remediation: A review[J]. Materials
Zhenjiang:Jiangsu University (江苏大学), 2009. Reports (材料导报), 2019, 33(5): 1550-1557.