Page 60 - 《精细化工》2022年第5期
P. 60
·914· 精细化工 FINE CHEMICALS 第 39 卷
128957. 江), et al. The invention relates to a preparation method of interlayer
[19] ZHANG C F, WANG C, HAO T T, et al. Electrochemical sensor for intercalated graphite: CN201510372162.2 [P]. 2017-05-03.
2+
the detection of ppq-level Cd based on a multifunctional composite [29] ZHANG W J (张伟君), ZHANG X C (张晓臣), LIU H C (刘洪成),
material by fast scan voltammetry[J]. Sensors and Actuators B: et al. The invention relates to an interlayer intercalation graphite
Chemical, 2021, 341: 130037. preparation equipment: CN201510372161.8 [P]. 2017-04-26.
[20] BHARDIYA S R, ASATI A, SHESHMA H, et al. A novel [30] WANG J, FU D, REN B Q, et al. Design and fabrication of
bioconjugated reduced graphene oxide-based nanocomposite for polypyrrole/expanded graphite 3D interlayer nanohybrids towards
sensitive electrochemical detection of cadmium in water[J]. Sensors high capacitive performance[J]. RSC Advances, 2019, 9(40): 23109-
and Actuators B: Chemical, 2021, 328: 129019. 23118.
[21] SILVA L A J, STEFANO J S, CARDOSO R M, et al. Evaluation of [31] KAN K, WANG L, YU P, et al. 2D quasi-ordered nitrogen-enriched
graphite sheets for production of high-quality disposable sensors[J]. porous carbon nanohybrids for high energy density supercapacitors
Journal of Electroanalytical Chemistry, 2019, 833: 560-567. [J]. Nanoscale, 2016, 8(19): 10166-10176.
[22] PROMPHET N, RATTANARAT P, RANGKUPAN R, et al. An [32] ZHAO Q (赵强), LYU M G (吕满庚). Synthesis of three-dimensional
electrochemical sensor based on graphene/polyaniline/polystyrene ordered polyaniline/graphene nanocomposite for supercapacitor
nanoporous fibers modified electrode for simultaneous determination electrode[J]. Fine Chemicals (精细化工), 2016, 33(6): 635-642.
of lead and cadmium[J]. Sensors and Actuators B: Chemical, 2015, [33] KAN K (阚侃), FU D (付东), WANG J (王珏), et al. Preparation and
207: 526-534. capacitive performance of interconnected composite nanowire based
[23] ELTAYEB N E, KHAN A. Preparation and properties of newly on polyaniline coated carbon nanofiber[J]. Fine Chemicals (精细化
synthesized polyaniline@graphene oxide/Ag nanocomposite for 工), 2019, 36(10): 2060-2067.
highly selective sensor application[J]. Journal of Materials Research [34] YANG D, NI W, CHENG J L, et al. Omnidirectional porous fiber
and Technology, 2020, 9(5): 10459-10467. scrolls of polyaniline nanopillars array-N-doped carbon nanofibers
2+
[24] ZHANG C, ZHOU Y Y, TANG L, et al. Determination of Cd and for fiber-shaped supercapacitors[J]. Materials Today Energy, 2017, 5:
2+
Pb based on mesoporous carbon nitride/self-doped polyaniline- 196-204.
nanofibers and squarewave anodic stripping voltammetry[J]. [35] ZOU Y D, WANG X X, AI Y J, et al. β-Cyclodextrin modified
Nanomaterials, 2016, 6(1): 7. graphitic carbon nitride for the removal of pollutants fromaqueous
[25] LIU R L, CAO H J, NIE Z B, et al. A disposable expanded graphite solution: Experimental and theoretical calculation study[J]. Journal of
paper electrode with self-doped sulfonated polyaniline/antimony for Materials Chemistry A, 2016, 4(37): 14170-14179.
stripping voltammetric determination of trace Cd and Pb[J]. [36] SHIRAVAND G, BADIEI A, ZIARANI G M. Carboxyl-rich g-C 3N 4
Analytical Methods, 2016, 8(7): 1618-1625. nanoparticles: Synthesis, characterization and their application for
3+
2+
[26] MA L F, ZHANG X Y, IKRAM M, et al. Controllable synthesis of an selective fluorescence sensingof Hg and Fe in aqueous media[J].
2+
intercalated ZIF-67/EG structure for the detection of ultratrace Cd , Sensors and Actuators B: Chemical, 2017, 242: 244-252.
2+
2+
2+
Cu , Hg and Pb ions[J]. Chemical Engineering Journal, 2020, [37] HASANJANI H R A, ZAREI K. An electrochemical sensor for
395: 125216. attomolardetermination of mercury (Ⅱ) using DNA/poly-L-methionine-
[27] WANG J, YU P, KAN K, et al. Efficient ultra-trace electrochemical gold nanoparticles/pencil graphite electrode[J]. Biosensors and Bioelec-
2+
2+
2+
detection of Cd , Pb and Hg based on hierarchical porous tronics, 2019, 128: 1-8.
S-doped C 3N 4 tube bundles graphene nanosheets composite[J]. [38] QIN F, TIAN X, GUO Z, et al. Asphaltene-based porous carbon
Chemical Engineering Journal, 2021, 420: 130317. nanosheet aselectrode for supercapacitor[J]. ACS Sustainable Chemistry
[28] ZHANG W J (张伟君), ZHANG X C (张晓臣), ZHOU G J (周国 & Engineering, 2018, 6(11): 15708-15719.
(上接第 881 页) 2016, 234: 317-325.
[47] ZHOU D J, ZHANG Z P, TANG J L, et al. Applied properties of [54] TIAN G Y, WANG W B, ZONG L, et al. A functionalized hybrid
oil-based drilling fluids with montmorillonites modified by cationic silicate adsorbent derived from naturally abundant low-grade
and anionic surfactants [J]. Applied Clay Science, 2016, 121/122(3): palygorskite clay for highly efficient removal of hazardous
1-8. antibiotics[J]. Chemical Engineering Journal, 2016, 293: 376-385.
[48] WU S Q, ZHANG Z P, WANG Y H, et al. Influence of montmorillonites [55] LI Y, WANG Z W, XIE X Y, et al. Removal of norfloxacin from
exchange capacity on the basal spacing of cation-anion organo- aqueous solution by clay-biochar composite prepared from potato
montmorillonites[J]. Materials Research Bulletin, 2014, 59: 59-64. stem and natural attapulgite[J]. Colloids & Surfaces A: Physicochemical
[49] FU M, ZHANG Z P, WU L M, et al. Investigation on the co-modification & Engineering Aspects, 2017, 514: 126-136.
process of montmorillonite by anionic and cationic surfactants[J]. [56] CHEN L, CHEN X L, ZHOU C H, et al. Environmental-friendly
Applied Clay Science, 2016, 132/133(11): 694-701. montmorillonite-biochar composites: Facile production and tunable
[50] ZHANG Z P, ZHANG J C, LIAO L B, et al. Synergistic effect of adsorption-release of ammonium and phosphate[J]. Journal of Cleaner
cationic and anionic surfactants for the modification of Ca- Production, 2017, 156(10): 648-659.
montmorillonite[J]. Materials Research Bulletin, 2013, 48(5): 1811-1816. [57] BEATA S. Photocatalytic degradation of organic contaminants over
[51] CHEN D M, JIAN C, LUAN X L, et al. Characterization of anion- clay-TiO 2 nanocomposites: A review[J]. Applied Clay Science, 2017,
cationic surfactants modified montmorillonite and its application for 141: 227-239.
the removal of methyl orange[J]. Chemical Engineering Journal, [58] DAO T, HA T, NGUYEN T D, et al. Effectiveness of photocatalysis
2011, 171(3): 1150-1158. of montmorillonite-supported TiO 2 and TiO 2 nanotubes for rhodamine
[52] RAHMANI S, ZEYNIZADEH B, KARAMI S. Removal of cationic B degradation[J]. Chemosphere, 2021, 280: 130802.
methylene blue dye using magnetic and anionic-cationic modified [59] XU T Y, ZHU R L, ZHU J X, et al. BiVO 4/Fe/Mt composite for
montmorillonite: Kinetic, isotherm and thermodynamic studies[J]. visible-light-driven degradation of acid red 18[J]. Applied Clay
Applied Clay Science, 2020, 184(1): 105391. Science, 2016, 129(8): 27-34.
[53] WANG W B, TIAN G Y, ZONG L, et al. Mesoporous hybrid [60] XU T Y, ZHU R L, ZHU J X, et al. Ag 3PO 4 immobilized on hydroxy-
Zn-silicate derived from red palygorskite clay as a high-efficient metal pillared montmorillonite for the visible light driven degradation of
adsorbent for antibiotics[J]. Microporous and Mesoporous Materials, acid red 18[J]. Catalysis Science & Technology, 2016, 6(12): 4116-4123.