Page 60 - 《精细化工》2022年第5期
P. 60

·914·                             精细化工   FINE CHEMICALS                                 第 39 卷

                 128957.                                           江), et al. The invention relates to a preparation method of interlayer
            [19]  ZHANG C F, WANG C, HAO T T, et al. Electrochemical sensor for   intercalated graphite: CN201510372162.2 [P]. 2017-05-03.
                                  2+
                 the detection of ppq-level Cd  based on a multifunctional composite   [29]  ZHANG W J (张伟君), ZHANG X C (张晓臣), LIU H C (刘洪成),
                 material by fast scan voltammetry[J]. Sensors and Actuators B:   et al. The invention relates to an interlayer intercalation graphite
                 Chemical, 2021, 341: 130037.                      preparation equipment: CN201510372161.8 [P]. 2017-04-26.
            [20]  BHARDIYA S R, ASATI A, SHESHMA H,  et al. A novel   [30]  WANG J, FU D, REN B Q,  et al. Design and  fabrication of
                 bioconjugated reduced graphene oxide-based nanocomposite for   polypyrrole/expanded graphite 3D interlayer nanohybrids towards
                 sensitive electrochemical detection of cadmium in water[J]. Sensors   high capacitive performance[J]. RSC Advances, 2019, 9(40): 23109-
                 and Actuators B: Chemical, 2021, 328: 129019.     23118.
            [21]  SILVA L A J, STEFANO J S, CARDOSO R M, et al. Evaluation of   [31]  KAN K, WANG L, YU P, et al. 2D quasi-ordered nitrogen-enriched
                 graphite sheets for production of high-quality disposable sensors[J].   porous carbon nanohybrids for high energy density supercapacitors
                 Journal of Electroanalytical Chemistry, 2019, 833: 560-567.   [J]. Nanoscale, 2016, 8(19): 10166-10176.
            [22]  PROMPHET N,  RATTANARAT P,  RANGKUPAN R,  et al. An   [32] ZHAO Q (赵强), LYU M G (吕满庚). Synthesis of three-dimensional
                 electrochemical sensor based  on  graphene/polyaniline/polystyrene   ordered  polyaniline/graphene nanocomposite for supercapacitor
                 nanoporous fibers modified electrode for simultaneous determination   electrode[J]. Fine Chemicals (精细化工), 2016, 33(6): 635-642.
                 of lead and cadmium[J]. Sensors and Actuators B: Chemical, 2015,   [33]  KAN K (阚侃), FU D (付东), WANG J (王珏), et al. Preparation and
                 207: 526-534.                                     capacitive performance of interconnected composite nanowire based
            [23]  ELTAYEB N  E,  KHAN  A. Preparation and properties of newly   on polyaniline coated carbon nanofiber[J]. Fine Chemicals (精细化
                 synthesized polyaniline@graphene oxide/Ag nanocomposite for   工), 2019, 36(10): 2060-2067.
                 highly selective sensor application[J]. Journal of Materials Research   [34]  YANG D, NI W, CHENG J L,  et al. Omnidirectional porous fiber
                 and Technology, 2020, 9(5): 10459-10467.          scrolls of  polyaniline nanopillars array-N-doped carbon  nanofibers
                                                       2+
            [24]  ZHANG C, ZHOU Y Y, TANG L, et al. Determination of Cd  and   for fiber-shaped supercapacitors[J]. Materials Today Energy, 2017, 5:
                  2+
                 Pb  based  on mesoporous carbon nitride/self-doped polyaniline-  196-204.
                 nanofibers and squarewave anodic stripping voltammetry[J].   [35]  ZOU Y D, WANG  X X, AI Y  J,  et al.  β-Cyclodextrin modified
                 Nanomaterials, 2016, 6(1): 7.                     graphitic  carbon nitride for the removal of pollutants fromaqueous
            [25]  LIU R L, CAO H J, NIE Z B, et al. A disposable expanded graphite   solution: Experimental and theoretical calculation study[J]. Journal of
                 paper electrode with self-doped sulfonated polyaniline/antimony for   Materials Chemistry A, 2016, 4(37): 14170-14179.
                 stripping voltammetric determination of trace Cd and Pb[J].   [36]  SHIRAVAND  G, BADIEI A, ZIARANI  G  M. Carboxyl-rich  g-C 3N 4
                 Analytical Methods, 2016, 8(7): 1618-1625.        nanoparticles: Synthesis,  characterization and their  application for
                                                                                              3+
                                                                                         2+
            [26]  MA L F, ZHANG X Y, IKRAM M, et al. Controllable synthesis of an   selective fluorescence sensingof Hg  and  Fe   in aqueous media[J].
                                                         2+
                 intercalated ZIF-67/EG structure for the detection of ultratrace Cd ,   Sensors and Actuators B: Chemical, 2017, 242: 244-252.
                            2+
                  2+
                      2+
                 Cu , Hg  and Pb  ions[J]. Chemical Engineering Journal, 2020,   [37]  HASANJANI H R  A, ZAREI K. An  electrochemical  sensor  for
                 395: 125216.                                      attomolardetermination of mercury (Ⅱ) using DNA/poly-L-methionine-
            [27]  WANG J, YU P, KAN K, et al. Efficient ultra-trace electrochemical   gold nanoparticles/pencil graphite electrode[J]. Biosensors and Bioelec-
                                      2+
                           2+
                               2+
                 detection of Cd , Pb  and Hg  based on hierarchical porous   tronics, 2019, 128: 1-8.
                 S-doped C 3N 4  tube bundles graphene nanosheets composite[J].   [38]  QIN  F, TIAN X, GUO Z,  et al.  Asphaltene-based porous  carbon
                 Chemical Engineering Journal, 2021, 420: 130317.   nanosheet aselectrode for supercapacitor[J]. ACS Sustainable Chemistry
            [28]  ZHANG W J (张伟君), ZHANG X C (张晓臣), ZHOU G J (周国   & Engineering, 2018, 6(11): 15708-15719.

            (上接第 881 页)                                            2016, 234: 317-325.
            [47]  ZHOU  D J, ZHANG Z P, TANG J  L,  et al. Applied properties of   [54]  TIAN G  Y, WANG W B,  ZONG L, et al. A functionalized hybrid
                 oil-based drilling fluids with montmorillonites modified by cationic   silicate adsorbent derived from naturally abundant low-grade
                 and anionic surfactants [J]. Applied Clay Science, 2016, 121/122(3):   palygorskite clay for  highly efficient removal of hazardous
                 1-8.                                              antibiotics[J]. Chemical Engineering Journal, 2016, 293: 376-385.
            [48]  WU S Q, ZHANG Z P, WANG Y H, et al. Influence of montmorillonites   [55]  LI Y, WANG Z W, XIE X Y,  et al.  Removal of norfloxacin from
                 exchange capacity on the basal spacing of cation-anion organo-   aqueous  solution  by clay-biochar composite prepared from potato
                 montmorillonites[J]. Materials Research Bulletin, 2014, 59: 59-64.   stem and natural attapulgite[J]. Colloids & Surfaces A: Physicochemical
            [49]  FU M, ZHANG Z P, WU L M, et al. Investigation on the co-modification   & Engineering Aspects, 2017, 514: 126-136.
                 process of montmorillonite by anionic and cationic surfactants[J].   [56]  CHEN L, CHEN X  L, ZHOU  C H,  et al. Environmental-friendly
                 Applied Clay Science, 2016, 132/133(11): 694-701.   montmorillonite-biochar composites: Facile production and tunable
            [50]  ZHANG  Z P, ZHANG J C, LIAO L  B, et al. Synergistic effect of   adsorption-release of ammonium and phosphate[J]. Journal of Cleaner
                 cationic and anionic surfactants for the  modification of Ca-   Production, 2017, 156(10): 648-659.
                 montmorillonite[J]. Materials Research Bulletin, 2013, 48(5): 1811-1816.   [57]  BEATA S. Photocatalytic degradation of organic contaminants over
            [51]  CHEN D M, JIAN C, LUAN X L, et al. Characterization of anion-   clay-TiO 2 nanocomposites: A review[J]. Applied Clay Science, 2017,
                 cationic surfactants modified montmorillonite and its application for   141: 227-239.
                 the removal of methyl orange[J]. Chemical Engineering Journal,   [58]  DAO T, HA T, NGUYEN T D, et al. Effectiveness of photocatalysis
                 2011, 171(3): 1150-1158.                          of montmorillonite-supported TiO 2 and TiO 2 nanotubes for rhodamine
            [52]  RAHMANI S, ZEYNIZADEH B, KARAMI S. Removal of cationic   B degradation[J]. Chemosphere, 2021, 280: 130802.
                 methylene blue dye using magnetic and anionic-cationic modified   [59]  XU T Y,  ZHU R  L, ZHU J X,  et al. BiVO 4/Fe/Mt composite for
                 montmorillonite: Kinetic, isotherm and thermodynamic  studies[J].   visible-light-driven degradation of acid red 18[J]. Applied Clay
                 Applied Clay Science, 2020, 184(1): 105391.       Science, 2016, 129(8): 27-34.
            [53]  WANG W B, TIAN G Y, ZONG  L, et al. Mesoporous  hybrid   [60]  XU T Y, ZHU R L, ZHU J X, et al. Ag 3PO 4 immobilized on hydroxy-
                 Zn-silicate derived from red palygorskite clay as a high-efficient   metal pillared montmorillonite for the visible light driven degradation of
                 adsorbent for antibiotics[J]. Microporous and Mesoporous Materials,   acid red 18[J]. Catalysis Science & Technology, 2016, 6(12): 4116-4123.
   55   56   57   58   59   60   61   62   63   64   65