Page 50 - 《精细化工》2022年第6期
P. 50
·1116· 精细化工 FINE CHEMICALS 第 39 卷
3+
synthesis of CNT/TiO 2 nanohybrid by in-surface oxidation of Ti ions [67] GANNOUN C, TRUKI A, KOCHKAR H, et al. Elaboration and
and application in the photocatalytic degradation of organic characterization of sulfated and unsulfated V 2O 5/TiO 2 nanotubes
contaminants in water[J]. Synthetic Metals, 2019, 251(5): 1-14. catalysts for chlorobenzene total oxidation[J]. Applied Catalysis B:
[48] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of Environmental, 2014, 147(7): 58-64.
titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163. [68] CAMPOSECO R, CASTILLO S, RODRIGUEZ-GONZALEZ V, et
[49] WENG L Q, SONG S H, HODGSON S, et al. Synthesis and al. Selective catalytic reduction of NO x by NH 3 at low temperature
characterisation of nanotubular titanates and titania[J]. Journal of the over manganese oxide catalysts supported on titanate nanotubes[J].
European Ceramic Society, 2006, 26(8):1405-1409. Chemical Engineering Communications, 2018, 205(11): 1583-1593.
[50] LI X F, ZHAO Y, JIAO Q Z, et al. Preparation of one-dimensional [69] WANG P L, WANG H Q, CHEN X B, et al. Novel SCR catalyst with
titanate nanomaterials using different titania sources[J]. Acta Physico- superior alkaline resistance performance: enhanced self-protection
Chimica Sinica, 2011, 27(8): 1996-2000. originated from modifying protonated titanate nanotubes[J]. Journal
[51] MA Y T, LIN Y, XIAO X R, et al. Sonication-hydrothermal of Materials Chemistry A, 2014, 3(2): 680-690.
combination technique for the synthesis of titanate nanotubes from [70] CHEN X B, WANG P L, FANG P, et al. Tuning the property of
commercially available precursors[J]. Materials Research Bulletin, Mn-Ce composite oxides by titanate nanotubes to improve the activity,
2006, 41(2): 237-243. selectivity and SO 2/H 2O tolerance in middle temperature NH 3-SCR
[52] YUAN Z Y, SU B L. Titanium oxide nanotubes, nanofibers and reaction[J]. Fuel Processing Technology, 2017, 167(13): 221-228.
nanowires[J]. Colloids and Surfaces A: Physicochemical and Engineering [71] YAO G S, WU L P, LV T, et al. The effect of CuO modification for a
Aspects, 2004, 241(1/2/3): 173-183. TiO 2 nanotube confined CeO 2 catalyst on the catalytic combustion of
[53] SEO H K, KIM G S, ANSARI S G, et al. A study on the butane[J]. Open Chemistry, 2018, 16(1): 1-8.
structure/phase transformation of titanate nanotubes synthesized at [72] CAMPOSECO R, CASTILLO S, MEJIA-CENTENO I, et al.
various hydrothermal temperatures[J]. Solar Energy Materials & Behavior of Lewis and Brönsted surface acidity featured by Ag, Au,
Solar Cells, 2008, 92(11): 1533-1539. Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate
[54] MA R, FUKUDA K, SASAKI T, et al. Structural features of titanate nanotubes[J]. Microporous and Mesoporous Materials, 2016, 236(18):
nanotubes/nanobelts revealed by Raman, X-ray absorption fine 235-243.
structure and electron diffraction characterizations[J]. Journal of [73] DAMMA D, PAPPAS D K, BONINGARI T, et al. Study of Ce, Sb,
Physical Chemistry B, 2005, 109(13):6210-6214. and Y exchanged titania nanotubes and superior catalytic performance
[55] ZHANG P (张萍), XU L (许丽), WANG L (王莉). Study on crystal for the selective catalytic reduction of NO x[J]. Applied Catalysis B:
and morphological control of TiO 2 nanotubes synthesized by Environmental, 2021, 287(8): 119939.
hydrothermal method[J]. Contemporary Chemical Industry (当代化 [74] WANG H Q, WANG P L, CHEN X B, et al. Uniformly active phase
工), 2018, 47(5):894-896. loaded selective catalytic reduction catalysts (V 2O 5/TNTs) with superior
[56] CHEN X B, WANG H Q, GAO S, et al. Effect of pH value on the alkaline resistance performance[J]. Journal of Hazardous Materials,
microstructure and deNO x catalytic performance of titanate nanotubes 2017, 324(7): 507-515.
loaded CeO 2[J]. Journal of Colloid and Interface Science, 2012, [75] CHEN X B, WANG H Q, WU Z B, et al. Novel H 2Ti 12O 25-confined
377(1): 131-136. CeO 2 catalyst with remarkable resistance to alkali poisoning based on
[57] CHEN H Y, LO S L, CHANG H L. Microwave-assisted synthesis of the “shell protection effect”[J]. The Journal of Physical Chemistry C,
titanate nanotubes loaded with platinum with enhanced selectivity for 2011, 115(35): 17479-17484.
photocatalytic H 2 evolution from methanol[J]. Nano, 2020, 15(10): [76] BONINGARI T, PAPPAS D K, SMIRNIOTIS P G. Metal oxide-
2050129. confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce,
[58] CHIANG H L H, OU H H, HUANG C W. Adsorption of Cu (Ⅱ) in Fe, V, Cr, and Co) for the selective catalytic reduction of NO x in the
aqueous solution using microwave-assisted titanate nanotubes[J]. presence of excess oxygen[J]. Journal of Catalysis, 2018, 365(9):
Applied Nanoscience, 2018, 9(4): 505-514. 320-333.
[59] BAI B (白波), ZHAO J L (赵景联). Study of the preparation of [77] KITANO M, WADA E, NAKAJIMA K, et al. Protonated titanate
nanosized TiO 2 by microwave hydrothermal methods and its nanotubes with Lewis and Brönsted acidity: Relationship between
photocatalytical performance[J]. Chemistry Bulletin (化学通报), 2005, nanotube structure and catalytic activity[J]. Chemistry of Materials,
68(10): 776-780. 2013, 25(3): 385-393.
[60] TENG H H, XU S K, WANG J K. Ultrasonication-assisted [78] YAO Y, ZHANG S L, ZHONG Q, et al. Low temperature selective
hydrothermal synthesis of ultralong TiO 2 nanotubes[J]. Rare Metal catalytic reduction of NO over manganese supported on TiO 2
Materials and Engineering, 2014, 43(10): 2326-2329. nanotubes[J].Journal of Fuel Chemistry and Technology, 2011,
[61] LI R M, CHEN G M, DONG G J, et al. Controllable synthesis of 39(9):694-701.
nanostructured TiO 2 by CTAB-assisted hydrothermal route[J]. New [79] XIAO Y T (肖雨亭), WU P (吴鹏), WANG L (王玲), et al.
Journal of Chemistry, 2014, 38(10): 4684-4689. Mechanism of sulfur poisoning on low-temperature SCR denitration
[62] ZHONG Y K, CHANG S, DONG G J, et al. Preparation and catalyst Ce-modified Fe-Mn/TiO 2[J]. Environmental Protection of
characterization of a novel double-walled Na 2(TiO)SiO 4 nanotube by Chemical Industry (化工环保), 2019, 39(4): 431-436.
hydrothermal process with CTAB as an assistant[J]. Microporous and [80] TAN W, LIU A N, XIE S H, et al. Ce-Si mixed oxide: A high sulfur
Mesoporous Materials , 2017, 239(3): 70-77. resistant catalyst in the NH 3-SCR reaction through the mechanism-
[63] CAMPOSECO R, CASTILLO S, MEJIA-CENTENO I, et al. Boosted enhanced process[J]. Environmental Science & Technology, 2021,
surface acidity in TiO 2 and Al 2O 3-TiO 2 nanotubes as catalytic 55(6): 4017-4026.
supports[J]. Applied Surface Science, 2015, 356(34): 115-123. [81] PAPPAS D, BONINGARI T, Boolchand P, et al. Novel manganese
[64] LEE T Y, LIOU S H, BAI H L, et al. Comparison of titania nanotubes oxide confined interweaved titania nanotubes for the low-temperature
and titanium dioxide as supports of low-temperature selective catalytic selective catalytic reduction (SCR) of NO x by NH 3[J]. Journal of
reduction catalysts under sulfur dioxide poisoning[J]. Journal of the Air Catalysis, 2016, 334(2): 1-13.
& Waste Management Association, 2017, 67(3): 292-305. [82] KANG K K (亢科科), YAO X J (姚小江), LUO W (骆雯), et al.
[65] LAI Y S, CHENG C T, LIOU J L, et al. The ZnO-Au-titanium oxide Research progress on the alkali metal resistance of the ceria-based
nanotubes (TiNTs) composites photocatalysts for CO 2 reduction denitration catalysts[J]. Modern Chemical Research (当代化工研究),
application[J]. Ceramics International, 2021, 47(21): 30020-30029. 2020, 55(2): 31-33.
[66] AGUILAR R M, CAMPOSECO R, CASTILLO S, et al. Acidity, [83] WANG P L, WANG H Q, CHEN X B, et al. Design strategies for a
surface species, and catalytic activity study on V 2O 5-WO 3/TiO 2 denitrification catalyst with improved resistance against alkali
nanotube catalysts for selective NO reduction by NH 3[J]. Fuel, 2017, poisoning: The significance of nanoconfining spaces and acid-base
198(12): 123-133. balance[J]. Chemcatchem, 2016, 8(4): 787-797.