Page 50 - 《精细化工》2022年第6期
P. 50

·1116·                            精细化工   FINE CHEMICALS                                 第 39 卷

                                                      3+
                 synthesis of CNT/TiO 2 nanohybrid by in-surface oxidation of Ti  ions   [67]  GANNOUN  C,  TRUKI A, KOCHKAR H,  et al. Elaboration and
                 and application in the photocatalytic degradation of organic   characterization of sulfated and unsulfated V 2O 5/TiO 2 nanotubes
                 contaminants in water[J]. Synthetic Metals, 2019, 251(5): 1-14.   catalysts for chlorobenzene total oxidation[J]. Applied Catalysis B:
            [48]  KASUGA  T, HIRAMATSU M, HOSON A,  et al. Formation of   Environmental, 2014, 147(7): 58-64.
                 titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163.   [68]  CAMPOSECO R, CASTILLO S, RODRIGUEZ-GONZALEZ V, et
            [49]  WENG L Q, SONG S  H, HODGSON S,  et al. Synthesis and   al. Selective catalytic reduction of NO x by NH 3 at low temperature
                 characterisation of nanotubular titanates and titania[J]. Journal of the   over manganese oxide catalysts supported on titanate nanotubes[J].
                 European Ceramic Society, 2006, 26(8):1405-1409.   Chemical Engineering Communications, 2018, 205(11): 1583-1593.
            [50]  LI X F, ZHAO Y, JIAO Q Z, et al. Preparation of one-dimensional   [69]  WANG P L, WANG H Q, CHEN X B, et al. Novel SCR catalyst with
                 titanate nanomaterials using different titania sources[J]. Acta Physico-   superior alkaline  resistance performance: enhanced self-protection
                 Chimica Sinica, 2011, 27(8): 1996-2000.           originated from modifying protonated titanate nanotubes[J]. Journal
            [51]  MA Y T, LIN Y, XIAO X R,  et al. Sonication-hydrothermal   of Materials Chemistry A, 2014, 3(2): 680-690.
                 combination technique for the synthesis of titanate nanotubes from   [70]  CHEN X B,  WANG P  L, FANG P,  et al.  Tuning the property of
                 commercially available precursors[J]. Materials Research Bulletin,   Mn-Ce composite oxides by titanate nanotubes to improve the activity,
                 2006, 41(2): 237-243.                             selectivity and SO 2/H 2O tolerance in middle temperature NH 3-SCR
            [52]  YUAN Z  Y, SU  B L. Titanium oxide nanotubes, nanofibers and   reaction[J]. Fuel Processing Technology, 2017, 167(13): 221-228.
                 nanowires[J]. Colloids and Surfaces A: Physicochemical and Engineering   [71]  YAO G S, WU L P, LV T, et al. The effect of CuO modification for a
                 Aspects, 2004, 241(1/2/3): 173-183.               TiO 2 nanotube confined CeO 2 catalyst on the catalytic combustion of
            [53]  SEO H K, KIM  G S,  ANSARI S G,  et al. A study on the   butane[J]. Open Chemistry, 2018, 16(1): 1-8.
                 structure/phase transformation of titanate nanotubes synthesized at   [72]  CAMPOSECO R, CASTILLO S,  MEJIA-CENTENO I,  et al.
                 various hydrothermal temperatures[J]. Solar Energy  Materials &   Behavior of Lewis and Brönsted surface acidity featured by Ag, Au,
                 Solar Cells, 2008, 92(11): 1533-1539.             Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate
            [54]  MA R, FUKUDA K, SASAKI T, et al. Structural features of titanate   nanotubes[J]. Microporous and Mesoporous Materials, 2016, 236(18):
                 nanotubes/nanobelts revealed by Raman, X-ray absorption  fine   235-243.
                 structure and electron  diffraction characterizations[J]. Journal of   [73]  DAMMA D, PAPPAS D K, BONINGARI T, et al. Study of Ce, Sb,
                 Physical Chemistry B, 2005, 109(13):6210-6214.    and Y exchanged titania nanotubes and superior catalytic performance
            [55]  ZHANG P (张萍), XU L (许丽), WANG L (王莉). Study on crystal   for the selective catalytic reduction of NO x[J]. Applied Catalysis B:
                 and morphological control of TiO 2 nanotubes synthesized by   Environmental, 2021, 287(8): 119939.
                 hydrothermal method[J]. Contemporary Chemical Industry (当代化  [74]  WANG H Q, WANG P L, CHEN X B, et al. Uniformly active phase
                 工), 2018, 47(5):894-896.                          loaded selective catalytic reduction catalysts (V 2O 5/TNTs) with superior
            [56]  CHEN X B, WANG H Q, GAO S, et al. Effect of pH value on the   alkaline resistance performance[J]. Journal of Hazardous Materials,
                 microstructure and deNO x catalytic performance of titanate nanotubes   2017, 324(7): 507-515.
                 loaded CeO 2[J]. Journal of Colloid  and Interface Science, 2012,   [75]  CHEN X B, WANG H Q, WU Z B, et al. Novel H 2Ti 12O 25-confined
                 377(1): 131-136.                                  CeO 2 catalyst with remarkable resistance to alkali poisoning based on
            [57]  CHEN H Y, LO S L, CHANG H L. Microwave-assisted synthesis of   the “shell protection effect”[J]. The Journal of Physical Chemistry C,
                 titanate nanotubes loaded with platinum with enhanced selectivity for   2011, 115(35): 17479-17484.
                 photocatalytic H 2  evolution from  methanol[J]. Nano, 2020, 15(10):   [76]  BONINGARI T, PAPPAS D K, SMIRNIOTIS P G. Metal oxide-
                 2050129.                                          confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce,
            [58]  CHIANG H L H, OU H H, HUANG C W. Adsorption of Cu (Ⅱ) in   Fe, V, Cr, and Co) for the selective catalytic reduction of NO x in the
                 aqueous solution  using microwave-assisted titanate nanotubes[J].   presence of excess oxygen[J]. Journal of Catalysis, 2018, 365(9):
                 Applied Nanoscience, 2018, 9(4): 505-514.         320-333.
            [59]  BAI B (白波), ZHAO J L (赵景联). Study of  the preparation of   [77]  KITANO M, WADA E, NAKAJIMA  K,  et al. Protonated titanate
                 nanosized TiO 2 by  microwave hydrothermal  methods and its   nanotubes with Lewis and Brönsted  acidity: Relationship between
                 photocatalytical performance[J]. Chemistry Bulletin (化学通报), 2005,   nanotube structure and catalytic activity[J]. Chemistry of Materials,
                 68(10): 776-780.                                  2013, 25(3): 385-393.
            [60]  TENG H H, XU S K, WANG J  K. Ultrasonication-assisted   [78]  YAO Y, ZHANG S L, ZHONG Q, et al. Low temperature selective
                 hydrothermal synthesis of ultralong TiO 2 nanotubes[J]. Rare Metal   catalytic reduction of NO over  manganese supported on TiO 2
                 Materials and Engineering, 2014, 43(10): 2326-2329.   nanotubes[J].Journal of  Fuel Chemistry and Technology, 2011,
            [61]  LI R M, CHEN G  M, DONG G J,  et al. Controllable synthesis of   39(9):694-701.
                 nanostructured TiO 2 by CTAB-assisted hydrothermal route[J]. New   [79]  XIAO Y T  (肖雨亭),  WU P (吴鹏), WANG L  (王玲),  et al.
                 Journal of Chemistry, 2014, 38(10): 4684-4689.    Mechanism of sulfur poisoning on low-temperature SCR denitration
            [62]  ZHONG Y K, CHANG S, DONG G J,  et al. Preparation and   catalyst Ce-modified  Fe-Mn/TiO 2[J]. Environmental Protection of
                 characterization of a novel double-walled Na 2(TiO)SiO 4 nanotube by   Chemical Industry (化工环保), 2019, 39(4): 431-436.
                 hydrothermal process with CTAB as an assistant[J]. Microporous and   [80]  TAN W, LIU A N, XIE S H, et al. Ce-Si mixed oxide: A high sulfur
                 Mesoporous Materials , 2017, 239(3): 70-77.       resistant catalyst in the NH 3-SCR reaction through the mechanism-
            [63]  CAMPOSECO R, CASTILLO S, MEJIA-CENTENO I, et al. Boosted   enhanced process[J].  Environmental Science &  Technology, 2021,
                 surface  acidity in TiO 2 and Al 2O 3-TiO 2 nanotubes as catalytic   55(6): 4017-4026.
                 supports[J]. Applied Surface Science, 2015, 356(34): 115-123.   [81]  PAPPAS D, BONINGARI T, Boolchand P, et al. Novel manganese
            [64]  LEE T Y, LIOU S H, BAI H L, et al. Comparison of titania nanotubes   oxide confined interweaved titania nanotubes for the low-temperature
                 and titanium dioxide as supports of low-temperature selective catalytic   selective catalytic reduction (SCR) of NO x by NH 3[J]. Journal of
                 reduction catalysts under sulfur dioxide poisoning[J]. Journal of the Air   Catalysis, 2016, 334(2): 1-13.
                 & Waste Management Association, 2017, 67(3): 292-305.   [82]  KANG  K K (亢科科), YAO X J (姚小江), LUO W (骆雯),  et al.
            [65]  LAI Y S, CHENG C T, LIOU J L, et al. The ZnO-Au-titanium oxide   Research progress on the alkali  metal resistance of the  ceria-based
                 nanotubes (TiNTs) composites photocatalysts for CO 2 reduction   denitration catalysts[J]. Modern Chemical Research (当代化工研究),
                 application[J]. Ceramics International, 2021, 47(21): 30020-30029.   2020, 55(2): 31-33.
            [66]  AGUILAR R M,  CAMPOSECO R,  CASTILLO S,  et al. Acidity,   [83]  WANG P L, WANG H Q, CHEN X B, et al. Design strategies for a
                 surface species,  and catalytic  activity study on V 2O 5-WO 3/TiO 2   denitrification catalyst with improved resistance against alkali
                 nanotube catalysts for selective NO reduction by NH 3[J]. Fuel, 2017,   poisoning: The significance of nanoconfining  spaces and acid-base
                 198(12): 123-133.                                 balance[J]. Chemcatchem, 2016, 8(4): 787-797.
   45   46   47   48   49   50   51   52   53   54   55