Page 49 - 《精细化工》2022年第6期
P. 49
第 6 期 王秋麟,等: 二氧化钛纳米管的制备及其在 SCR 脱硝领域应用的研究进展 ·1115·
294(15):120245. nanotubes[J]. Chemical Industry and Engineering Progress (化工进
[8] WANG P, YU D, ZHANG L D, et al. Evolution mechanism of NO x 展), 2015, 34(5): 1311-1316,1322.
in NH 3-SCR reaction over Fe-ZSM-5 catalyst: Species-performance [28] FENG Y Y, RIJNAARTS H, YNTEMA D, et al. Applications of
relationships[J]. Applied Catalysis A General, 2020, 607(19):117806. anodized TiO 2 nanotube arrays on the removal of aqueous
[9] ZHANG P (张鹏), JIA Y Y (贾媛媛), TANG Z H (唐中华), et al. contaminants of emerging concern: A review[J]. Water Research,
Research advances in poisoning resistance of vanadium-titanium 2020, 186(19): 116327.
denitration catalysts against SO 2 and H 2O[J]. Modern Chemical [29] LIAO J M (廖金明), CHEN X X (成先雄), WANG P H (王鹏辉), et
Industry (现代化工), 2021, 41(4): 67-71. al. The preparation of titania nanotubes and its application in
[10] GUO Z M(郭志敏), YUAN J (袁坚), PENG X J (彭小晋), et al. The photocatalytic degradation of organic matter research progress[J].
effect of sodium salts on catalytic activity of V 2O 5-WO 3/TiO 2 over Technology of Water Treatment (水处理技术), 2016, 42(8): 6-10.
NH 3-SCR reaction[J]. Journal of Molecular Catalysis (分子催化), [30] HOYER P. Formation of a titanium dioxide nanotube array[J].
2016, 30(6): 547-556. Langmuir, 1996, 12(6): 1411-1413.
[11] LIU X L, ZHAO Z W, NING R L, et al. Ce-Doped V 2O 5-WO 3/TiO 2 [31] PAN F (潘峰), ZHANG W (张旺), ZHANG D (张荻). Research
with low vanadium loadings as SCR catalysts and the resistance of advances in template-assisted synthesis of TiO 2[J]. Materials Reports
H 2O and SO 2[J]. Catalysis Letters, 2020, 150(2): 375-383. (材料导报), 2015, 29(1): 22-30.
[12] FENG Q (冯晴), ZENG X J (曾贤君), ZHANG L J (张利杰), et al. [32] JUNG J H, KOBAYASHI H, VAN BOMMEL K J C, et al. Creation
Summary of transition metal manganese-based denitration catalyst of novel helical ribbon and double-layered nanotube TiO 2 structures
for low temperature NH 3-SCR[J]. Inorganic Chemicals Industry (无 using an organogel template[J]. Chemistry of Materials, 2002, 14(4):
机盐工业), 2021, 53(1): 7-13, 23. 1445-1447.
[13] WEN N N, LING R, SU Y X, et al. SCR of NO with CH 4 over [33] ZHU P X (朱培旭), WU M M (吴明娒), HUANG A H (黄爱红).
Fe/Ga 2O 3-Al 2O 3 and the mechanism[J]. Journal of Environmental The investigation on preparation of mesoporous materials by using
Chemical Engineering, 2021, 9(1): 105014. self-assembly of surfactant molecules[J]. Jorunal of Functional Materials
[14] KIJLSTRA W S, BIERVLIET M, POELS E K, et al. Deactivation by (功能材料), 2001, 32(6): 590-594.
SO 2 of MnO x/Al 2O 3 catalysts used for the selective catalytic [34] REN Q W (任青文), ZHAO P Y (赵丕阳), WANG Y W (王岩伟), et
reduction of NO with NH 3 at low temperatures[J]. Applied Catalysis al. Research review of the preparation of alumina template and its
B: Environmental, 1998, 16(4): 327-337. influence parameters[J]. Plating Finishing (电镀与精饰), 2017,
[15] XIE W W (谢旺旺), ZHOU G H (周广贺), ZHANG X H (张晓虹), 39(8): 19-24.
et al. Research progress of attapulgite application in flue gas SCR [35] ZHANG H C, ZHOU M L, FU Q, et al. Observation of defect state in
denitration catalytic reaction[J]. Journal of Molecular Catalysis (分子 highly ordered titanium dioxide nanotube arrays[J]. Nanotechnology,
催化), 2020, 34(6): 546-558. 2014, 27(25): 275603.
[16] ZHANG L, DU T Y, QU H X, et al. Synthesis of Fe-ZSM-5@Ce/ [36] LI X H (李晓红), ZHANG X G (张校刚), LI H L (力虎林). Template
mesoporous-silica and its enhanced activity by sequential reaction synthesis and characterization of TiO 2 nanotubules[J]. Chemical
process for NH 3-SCR[J]. Chemical Engineering Journal, 2017, 313(7): Journal of Chinese Universities (高等学校化学学报), 2001, 22(1):
702-710. 130-132.
[17] SHAO J M, WANG Z H, LIU P X, et al. Interplay effect on [37] KONG X R (孔祥荣), PENG P (彭鹏), SUN G X (孙桂香), et al.
simultaneous catalytic oxidation of NO x and toluene over different Research advances in TiO 2 nanotubes[J]. Chemistry Bulletin (化学通
crystal types of MnO 2 catalysts[J]. Proceedings of the Combustion 报), 2007, 70(1): 8-13.
Institute, 2021, 38(4): 5433-5441. [38] XUE H S (薛寒松), LI H J (李华基), HU H F (胡慧芳), et al.
[18] LI H H (李航航), ZHAO W (赵炜), WANG Q (王谦), et al. Photocatalytic property of lanthanum-doped titanium dioxide
Boron-modified vanadia/titania catalyst for low-temperature NH 3-SCR nanotubes[J]. Journal of the Chinese Society of Rare Earths (中国稀
of NO x[J]. Journal of Molecular Catalysis (分子催化), 2021, 35(2): 土学报), 2008, 26(1): 18-23.
121-129. [39] ZWILLING V, AUCOUTURIER M, DARQUE-CERETTI E. Anodic
[19] WANG H, YUAN B, HAO R L, et al. A critical review on the oxidation of titanium and TA6V alloy in chromic media. An
method of simultaneous removal of multi-air-pollutant in flue gas[J]. electrochemical approach[J]. Electrochimica Acta, 1999, 45(6):
Chemical Engineering Journal, 2019, 378(24): 122115. 921-929.
[20] YANG Y (杨洋), HU Z (胡准), MI R L (米容立), et al. Effect of Mn [40] WANG J (王晶), FAN H W (范昊雯), ZHANG H (张贺), et al.
loading on catalytic performance of nMnO x/TiO 2 in NH 3-SCR reaction[J]. Anodizing process of titanium and formation mechanism of anodic
Journal of Molecular Catalysis (分子催化), 2020, 34(4): 313-325. TiO 2 nanotubes[J]. Progress in Chemistry (化学进展), 2016, 28(2):
[21] GONG P J, XIE J L, FANG D, et al. Enhancement of the NH 3-SCR 284-295.
property of Ce-Zr-Ti by surface and structure modification with P[J]. [41] LIU P R, ZHANG H M, LIU H W, et al. A facile vapor-phase
Applied Surface Science, 2019, 505(7): 144641. hydrothermal method for direct growth of titanate nanotubes on a
[22] GONG P J, XIE J L, CHENG X K, et al. Elucidate the promotional titanium substrate via a distinctive nanosheet roll-up mechanism[J].
effects of Sn on Ce-Ti catalysts for NH 3-SCR activity[J]. Journal of Journal of the American Chemical Society, 2011, 133(47): 19032-19035.
the Energy Institute, 2019, 93(3): 1053-1063. [42] SIVAPRAKASH V, NARAYANAN R. Synthesis of TiO 2 nanotubes
[23] WANG H Q, CHEN X B, WENG X L, et al. Enhanced catalytic via electrochemical anodization with different water content[J].
activity for selective catalytic reduction of NO over titanium Materials Today: Proceedings, 2020, 37(2): 142-146.
nanotube-confined CeO 2 catalyst[J]. Catalysis Communications, 2011, [43] MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of
12(11): 1042-1045. tapered, conical-shaped titania nanotubes[J]. Journal of Material
[24] CHEN X B (陈雄波). Study on the deNO x activity and the resistance Research, 2003, 18(11):2588-2593.
to alkali & alkaline earth metal poisoning of ceria doped titanate [44] SKELDON P, THOMPSON G E, GARCIA-VERGARA S J, et al. A
nanotubes[D]. Hangzhou: Zhejiang University (浙江大学), 2012. tracer study of porous anodic alumina[J]. Electrochemical and Solid
[25] WANG P L (王芃芦). The superior NH 3-SCR activity and posion State Letters, 2006, 11(9): B47.
resistance of titanate and ceria nanotubes supported DeNO x [45] ZHU X F, SONG Y, LIU L, et al. Electronic currents and the
catalysts[D]. Hangzhou: Zhejiang University (浙江大学), 2018. formation of nanopores in porous anodic alumina[J]. Nanotechnology,
[26] XIONG L Y, ZHONG Q, CHEN Q Q, et al. TiO 2 nanotube-supported 2009, 47(20): 475303.
V 2O 5 catalysts for selective NO reduction by NH 3[J]. Korean Journal [46] OZKAN S, MAZARE A, SCHMUKI P. Critical parameters and
of Chemical Engineering, 2013, 30(4): 836-841. factors in the formation of spaced TiO 2 nanotubes by self-organizing
[27] WANG Q (王俏), WANG W (王威), CUI F Y (崔福义), et al. anodization[J]. Electrochimica Acta, 2018, 268(10): 435-447.
Preparation, modification and application of titanium dioxide [47] ABEGA A V, NGOMO H M, NONGWE I, et al. Easy and convenient