Page 49 - 《精细化工》2022年第6期
P. 49

第 6 期              王秋麟,等:  二氧化钛纳米管的制备及其在 SCR 脱硝领域应用的研究进展                                ·1115·


                 294(15):120245.                                   nanotubes[J]. Chemical Industry and Engineering Progress (化工进
            [8]   WANG P, YU D, ZHANG L D, et al. Evolution mechanism of NO x   展), 2015, 34(5): 1311-1316,1322.
                 in NH 3-SCR reaction over Fe-ZSM-5 catalyst: Species-performance   [28]  FENG Y Y,  RIJNAARTS H,  YNTEMA D,  et al. Applications of
                 relationships[J]. Applied Catalysis A General, 2020, 607(19):117806.   anodized TiO 2 nanotube arrays on the removal of aqueous
            [9]   ZHANG P (张鹏), JIA Y Y (贾媛媛), TANG Z H (唐中华), et al.   contaminants of emerging concern:  A review[J]. Water Research,
                 Research advances in poisoning resistance of vanadium-titanium   2020, 186(19): 116327.
                 denitration catalysts against SO 2 and H 2O[J]. Modern Chemical   [29]  LIAO J M (廖金明), CHEN X X (成先雄), WANG P H (王鹏辉), et
                 Industry (现代化工), 2021, 41(4): 67-71.              al. The preparation of titania nanotubes and its application in
            [10]  GUO Z M(郭志敏), YUAN J (袁坚), PENG X J (彭小晋), et al. The   photocatalytic degradation of organic  matter research progress[J].
                 effect of sodium salts on catalytic activity of V 2O 5-WO 3/TiO 2 over   Technology of Water Treatment (水处理技术), 2016, 42(8): 6-10.
                 NH 3-SCR reaction[J]. Journal of Molecular Catalysis (分子催化),   [30]  HOYER P. Formation of a titanium dioxide nanotube array[J].
                 2016, 30(6): 547-556.                             Langmuir, 1996, 12(6): 1411-1413.
            [11]  LIU X L, ZHAO Z W, NING R L, et al. Ce-Doped V 2O 5-WO 3/TiO 2   [31]  PAN F (潘峰), ZHANG W (张旺), ZHANG D (张荻). Research
                 with low vanadium loadings as SCR catalysts and the resistance of   advances in template-assisted synthesis of TiO 2[J]. Materials Reports
                 H 2O and SO 2[J]. Catalysis Letters, 2020, 150(2): 375-383.   (材料导报), 2015, 29(1): 22-30.
            [12]  FENG Q (冯晴), ZENG X J (曾贤君), ZHANG L J (张利杰), et al.   [32]  JUNG J H, KOBAYASHI H, VAN BOMMEL K J C, et al. Creation
                 Summary of transition metal  manganese-based denitration catalyst   of novel helical ribbon and double-layered nanotube TiO 2 structures
                 for low temperature NH 3-SCR[J]. Inorganic Chemicals Industry (无  using an organogel template[J]. Chemistry of Materials, 2002, 14(4):
                 机盐工业), 2021, 53(1): 7-13, 23.                     1445-1447.
            [13]  WEN N  N, LING  R, SU Y X,  et al. SCR of NO with CH 4 over   [33]  ZHU P  X (朱培旭), WU M  M (吴明娒), HUANG A  H (黄爱红).
                 Fe/Ga 2O 3-Al 2O 3 and the mechanism[J]. Journal  of Environmental   The investigation on preparation of mesoporous materials by using
                 Chemical Engineering, 2021, 9(1): 105014.         self-assembly of surfactant molecules[J]. Jorunal of Functional Materials
            [14]  KIJLSTRA W S, BIERVLIET M, POELS E K, et al. Deactivation by   (功能材料), 2001, 32(6): 590-594.
                 SO 2 of MnO x/Al 2O 3 catalysts used for the selective catalytic   [34]  REN Q W (任青文), ZHAO P Y (赵丕阳), WANG Y W (王岩伟), et
                 reduction of NO with NH 3 at low temperatures[J]. Applied Catalysis   al. Research review of the preparation of alumina template and its
                 B: Environmental, 1998, 16(4): 327-337.           influence parameters[J]. Plating Finishing (电镀与精饰), 2017,
            [15]  XIE W W (谢旺旺), ZHOU G H (周广贺), ZHANG X H (张晓虹),   39(8): 19-24.
                 et al.  Research progress of attapulgite application in flue gas SCR   [35]  ZHANG H C, ZHOU M L, FU Q, et al. Observation of defect state in
                 denitration catalytic reaction[J]. Journal of Molecular Catalysis (分子  highly ordered titanium dioxide nanotube  arrays[J].  Nanotechnology,
                 催化), 2020, 34(6): 546-558.                        2014, 27(25): 275603.
            [16]  ZHANG L, DU T Y, QU H X, et al. Synthesis of Fe-ZSM-5@Ce/   [36]  LI X H (李晓红), ZHANG X G (张校刚), LI H L (力虎林). Template
                 mesoporous-silica and its enhanced activity by sequential reaction   synthesis and characterization of TiO 2 nanotubules[J]. Chemical
                 process for NH 3-SCR[J]. Chemical Engineering Journal, 2017, 313(7):   Journal of Chinese Universities (高等学校化学学报), 2001, 22(1):
                 702-710.                                          130-132.
            [17]  SHAO J M, WANG Z  H,  LIU P  X,  et al. Interplay effect on   [37]  KONG X R (孔祥荣), PENG P (彭鹏), SUN G X (孙桂香), et al.
                 simultaneous catalytic oxidation of NO x and toluene over different   Research advances in TiO 2 nanotubes[J]. Chemistry Bulletin (化学通
                 crystal types of MnO 2 catalysts[J]. Proceedings of the Combustion   报), 2007, 70(1): 8-13.
                 Institute, 2021, 38(4): 5433-5441.            [38]  XUE H S (薛寒松), LI H J (李华基),    HU H F (胡慧芳),  et al.
            [18]  LI H H (李航航), ZHAO W (赵炜), WANG  Q (王谦),  et al.   Photocatalytic property of lanthanum-doped titanium dioxide
                 Boron-modified vanadia/titania catalyst for low-temperature NH 3-SCR   nanotubes[J]. Journal of the Chinese Society of Rare Earths (中国稀
                 of NO x[J]. Journal of Molecular Catalysis (分子催化), 2021, 35(2):   土学报), 2008, 26(1): 18-23.
                 121-129.                                      [39]  ZWILLING V, AUCOUTURIER M, DARQUE-CERETTI E. Anodic
            [19]  WANG H, YUAN B, HAO  R  L,  et al. A critical review on the   oxidation of titanium  and  TA6V alloy in chromic  media. An
                 method of simultaneous removal of multi-air-pollutant in flue gas[J].   electrochemical  approach[J]. Electrochimica  Acta, 1999, 45(6):
                 Chemical Engineering Journal, 2019, 378(24): 122115.   921-929.
            [20]  YANG Y (杨洋), HU Z (胡准), MI R L (米容立), et al. Effect of Mn   [40]  WANG J (王晶),  FAN H W (范昊雯), ZHANG H (张贺),  et al.
                 loading on catalytic performance of nMnO x/TiO 2 in NH 3-SCR reaction[J].   Anodizing process of titanium and formation mechanism of anodic
                 Journal of Molecular Catalysis (分子催化), 2020, 34(4): 313-325.   TiO 2  nanotubes[J]. Progress in Chemistry (化学进展), 2016, 28(2):
            [21]  GONG P J, XIE J L, FANG D, et al. Enhancement of the NH 3-SCR   284-295.
                 property of Ce-Zr-Ti by surface and structure modification with P[J].   [41]  LIU P R, ZHANG H M, LIU H W,  et al. A facile vapor-phase
                 Applied Surface Science, 2019, 505(7): 144641.    hydrothermal  method for direct growth of titanate nanotubes on a
            [22]  GONG P J, XIE J L, CHENG X K, et al. Elucidate the promotional   titanium substrate via a distinctive nanosheet roll-up mechanism[J].
                 effects of Sn on Ce-Ti catalysts for NH 3-SCR activity[J]. Journal of   Journal of the American Chemical Society, 2011, 133(47): 19032-19035.
                 the Energy Institute, 2019, 93(3): 1053-1063.   [42]  SIVAPRAKASH V, NARAYANAN R. Synthesis of TiO 2 nanotubes
            [23]  WANG H  Q, CHEN X B, WENG X L,  et al. Enhanced catalytic   via electrochemical anodization with different water content[J].
                 activity for  selective catalytic reduction of NO over titanium   Materials Today: Proceedings, 2020, 37(2): 142-146.
                 nanotube-confined CeO 2 catalyst[J]. Catalysis Communications, 2011,   [43]  MOR  G K,  VARGHESE O K, PAULOSE M, et al. Fabrication of
                 12(11): 1042-1045.                                tapered, conical-shaped titania nanotubes[J]. Journal of Material
            [24]  CHEN X B (陈雄波). Study on the deNO x activity and the resistance   Research, 2003, 18(11):2588-2593.
                 to alkali & alkaline earth  metal poisoning  of ceria doped titanate   [44]  SKELDON P, THOMPSON G E, GARCIA-VERGARA S J, et al. A
                 nanotubes[D]. Hangzhou: Zhejiang University (浙江大学), 2012.   tracer study of porous anodic alumina[J]. Electrochemical and Solid
            [25]  WANG P  L (王芃芦). The superior  NH 3-SCR activity and posion   State Letters, 2006, 11(9): B47.
                 resistance of titanate and ceria nanotubes supported DeNO x   [45]  ZHU  X F, SONG Y,  LIU L,  et al. Electronic currents and the
                 catalysts[D]. Hangzhou: Zhejiang University (浙江大学), 2018.   formation of nanopores in porous anodic alumina[J]. Nanotechnology,
            [26]  XIONG L Y, ZHONG Q, CHEN Q Q, et al. TiO 2 nanotube-supported   2009, 47(20): 475303.
                 V 2O 5 catalysts for selective NO reduction by NH 3[J]. Korean Journal   [46]  OZKAN S, MAZARE  A, SCHMUKI P. Critical parameters and
                 of Chemical Engineering, 2013, 30(4): 836-841.    factors in the formation of spaced TiO 2 nanotubes by self-organizing
            [27] WANG  Q  (王俏), WANG W (王威), CUI F  Y (崔福义),  et al.   anodization[J]. Electrochimica Acta, 2018, 268(10): 435-447.
                 Preparation, modification and application of titanium dioxide   [47]  ABEGA A V, NGOMO H M, NONGWE I, et al. Easy and convenient
   44   45   46   47   48   49   50   51   52   53   54