Page 43 - 《精细化工》2022年第7期
P. 43

第 7 期                     万建升,等: N—Cl 型卤胺抗菌材料紫外稳定性研究进展                                  ·1329·


                 halamine polymeric electrolytes[J]. Materials Science & Engineering   [39]  LI J, LIU  Y, JIANG Z M,  et al. Antimicrobial cellulose modified
                 C, 2020, 115: 111122.                             with nanotitania and cyclic N-halamine[J]. Industrial & Engineering
            [23]  KOCER H B, AKDAG A, WORLEY S D,  et al. Mechanism of   Chemistry Research, 2014, 53(33): 13058-13064.
                 photolytic decomposition of N-halamine antimicrobial siloxane   [40]  LIU  Y, LI J, LI L,  et al. Characterization and mechanism for the
                 coatings[J]. ACS Applied Materials & Interfaces, 2010, 2(8):   protection of photolytic decomposition of N-halamine siloxane
                 2456-2464.                                        coatings by titanium dioxide[J]. ACS Applied Materials & Interfaces,
            [24]  LIU P S, GUO S, LIAN M M,  et al. Improving water-injection   2016, 8(5): 3516-3523.
                 performance of quartz sand proppant by surface  modification with   [41]  BU D L,  LI N,  ZHOU  Y,  et al. Enhanced  UV stability of
                 surface-modified nanosilica[J]. Colloids and Surfaces A: Physicochemical   N-halamine-immobilized Fe 3O 4@SiO 2@TiO 2 nanoparticles: Synthesis,
                 and Engineering Aspects, 2015, 470: 114-119.      characteristics and antibacterial property[J]. New Journal of
            [25]  KOCER H B, CERKEZ I, WORLEY S D,  et al. Polymeric   Chemistry, 2020, 44(25): 10352-10358.
                 antimicrobial N-halamine epoxides[J].  ACS Applied Materials and   [42]  LI L, MA W, DING J, et al. Rational design of TiO 2 nanomaterials
                 Interfaces, 2011, 3(8): 2845-2850.                using miniemulsion polymerization: Rapid antimicrobial  efficiency
            [26]  CERKEZ I,  KOCER H  B, WORLEY S D, et al. N-halamine   and enhanced UV stability[J]. Polymer-Plastics Technology and
                 copolymers for biocidal coatings[J]. Reactive and  Functional   Materials, 2020, 59(14): 1585-1594.
                 Polymers, 2012, 72(10): 673-679.              [43]  LIN X  H,  LI S S, JUNG J, et al. PHB/PCL fifibrous  membranes
            [27]  SANDSTROM A, SUN G. Durability of biocidal nomex fabrics for   modifified with SiO 2@TiO 2-based core@shell composite nanoparticles
                 multi-functional firefighter uniforms[J]. Research Journal of Textile   for hydrophobic and antibacterial applications[J]. RSC  Advances,
                 and Apparel, 2006, 10(4): 13-18.                  2019, 9: 23071-23080.
            [28]  JIANG Z M, MA K K, DU J M, et al. Synthesis of novel reactive   [44]  QIN Y (秦圆), LI H (李红), ZHU J L (朱炯霖), et al. Multifunctional
                 N-halamine precursors and application in antimicrobial cellulose[J].   finishing of cotton fabric by nano zinc oxide and nano silver[J]. Fine
                 Applied Surface Science, 2014, 288: 518-523.      Chemicals (精细化工), 2021, 38(7): 1386-1392, 1458.
            [29]  YU S J (于淑娟), ZHENG Y B (郑玉斌), DU J (杜杰), et al. Review   [45]  BARANI H. Preparation of antibacterial coating based on  in situ
                 on development of sun screening agent[J]. China Surfactant   synthesis of ZnO/SiO 2 hybrid nanocomposite on cotton fabric[J].
                 Detergent & Cosmetics (日用化学工业), 2005, 35(4): 248-251.   Applied Surface Science, 2014, 320: 429-434.
            [30]  ZHANG Q J (张倩洁), SHEN X L (沈兴亮), CHANG S N (畅绍念),   [46]  BILLING M, RUDOLPH T, TÄUSCHER E,  et al. Synthesis and
                 et al. Research progress of the crystallization rule and inhibition   complexation of well-defined labeled poly (N,N-dimethylaminoethyl
                 mechanism of sun-screening agent in emulsion[J]. Fine Chemicals   methacrylate)s (PDMAEMA)[J]. Polymers, 2015, 7(12): 2478-2493.
                 (精细化工), 2021, 38(2): 234-240.                 [47]  MA  W, LI  L, LIU Y,  et al.  Tailored assembly of vinylbenzyl N-
            [31]  LI R, LV  B  Q, LI J,  et al. Multi-functional properties of cotton   halamine with end-activated ZnO to form hybrid nanoparticles for
                 fabrics treated with UV absorber and N-halamine[J]. Fibers and   quick antibacterial response and enhanced UV stability[J]. Journal of
                 Polymers, 2015, 16(9): 1876-1881.                 Alloys and Compounds, 2019, 797: 692-701.
            [32]  DING Y (丁阳), LI R (李蓉), YU Q B (喻庆波), et al. Synthesis of   [48]  MA W, LI  L,  LIN X H,  et al. Novel ZnO/N-halamine-mediated
                 an antibacterial and anti-UV bifunctional finishing agent and its   multifunctional dressings as quick antibacterial agent for biomedical
                 application in cotton fabrics[J]. New Chemical Materials (化工新型  applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34):
                 材料), 2017, 45(7): 211-213, 216.                   31411-31420.
            [33]  HOU A Q, SUN G. Multifunctional finishing of cotton with 3,3ʹ,4,4ʹ-   [49]  WANG P, HUANG B B, QIN X Y,  et al. Ag@AgCl: A  highly
                 benzophenone tetracarboxylic  acid functional  performance[J].   efficient and stable photocatalyst active under visible light[J].
                 Carbohydrate Polymers, 2013, 96(2): 435-439.      Angewandte Chemie International Edition, 2008, 47(41): 7931-7933.
            [34]  HOU A Q, FENG G C, ZHUO J Y,  et al. UV Light-induced   [50]  MA Z P, YIN M L, QI Z M, et al. Preparation of durable antibacterial
                 generation of reactive oxygen species and antimicrobial properties of   cellulose with AgCl nanoparticles[J]. Fibers and Polymers, 2018,
                 cellulose fabric modified  by 3,3ʹ,4,4ʹ-benzophenone tetracarboxylic   19(10): 2097-2102.
                 acid[J]. ACS Applied Materials  & Interfaces, 2015,  7(50): 27918-   [51]  KUMAR K, AMOL T, ANJAN K. Electro-conductive cotton fabric
                 27924.                                            prepared by electron beam induced graft polymerization and
            [35]  NASR M,  VITER R, EID C,  et al. Enhanced photocatalytic   electroless deposition technology[J].  Journal of Applied Polymer
                 performance of novel electrospun BN/TiO 2 composite nanofibers[J].   Science, 2017, 134(11): 44576.
                 New Journal of Chemistry, 2017, 41(1): 81-89.   [52]  LIU Y, JIANG Z  M, LI J,  et al. Antibacterial functionalization of
            [36]  FOSTER H A, DITTA I  B, VARGHESE S,  et al. Photocatalytic   cotton fabrics by electric-beam irradiation[J]. Journal of Applied
                 disinfection using  titanium dioxide:  Spectrum and mechanism of   Polymer Science, 2015, 132(23): 42023.
                 antimicrobial activity[J]. Applied Microbiology and Biotechnology,   [53]  CHEN Y, WANG Y Y, FENG C Y, et al. Novel quat/di-N-halamines
                 2011, 90(6): 1847-1868.                           silane unit with enhanced synergism  polymerized on cellulose for
            [37]  LI J, LI R, DU J  M,  et al. Improved UV stability of antibacterial   development of superior biocidability[J]. International Journal of
                 coatings with N-halamine/TiO 2[J]. Cellulose, 2013, 20(4): 2151-2161.   Biological Macromolecules, 2020, 154: 173-181.
            [38]  LI R, SUN M M, JIANG Z M,  et al. N-halamine-bonded cotton   [54]  CHEN Y, WANG  Y Y, WANG Z D,  et al. Engineering of super
                 fabric with antimicrobial and easy-care properties[J].  Fibers and   bactericidal cotton  using pyridinium/di-N-chloramine siloxane with
                 Polymers, 2014, 15(2): 234-240.                   intensified synergism[J]. Cellulose, 2021, 28: 6713-6725.
   38   39   40   41   42   43   44   45   46   47   48