Page 110 - 《精细化工》2022年第8期
P. 110

·1610·                            精细化工   FINE CHEMICALS                                 第 39 卷

                                                               可以看出,所构建的 TiO 2 /WO 3 /Bi 2 WO 6 半导体复合
                                                               结构有利于空穴的转移,提高了电子的注入速率,
                                                               进而极大地增强了光催化剂的活性。等离子体改性
                                                               对提升复合材料的光催化活性有着促进作用,经等
                                                               离子体改性处理后,三元复合材料的吸收边向可见
                                                               光红移,可见光响应增强,放电电压的增加有助于
                                                               提高复合材料的光催化活性。AP1.1、AP1.0、AP0.9
                                                               三元 复合材料光降解速率常数分别为 0.0319、
                                                                               –1
                                                               0.0203、0.0197 min ,均高于未处理的原始样品。其
                                                               中,AP1.1 的降解速率常数分别是未处理 TiO 2 /WO 3 /
                                                               Bi 2 WO 6 和 WO 3 /Bi 2 WO 6 的 2.2 和 3.9 倍。等离子体
                                                               改性 TiO 2 /WO 3 /Bi 2 WO 6 复合光催化剂对于利用太阳
                                                               光能降解废水中的有机污染物有潜在的利用价值。

                                                               参考文献:
                                                               [1]   YAN Z L, GUO H Z, YONG G Z, et al. Highly efficient and mild
                                                                   electrochemical incineration: Mechanism and kinetic process
                                                                   ofrefractory  aromatic hydrocarbon pollutants on  superhydrophobic
                                                                   PbO 2  anode[J]. Environmental  Science & Technology, 2010,  44:
                                                                   7921-7927.
                                                               [2]   LI M, CHEN Y, LI W, et al. Ultrathin anatase TiO 2 nanosheets for
                                                                   high-performance  photocatalytic hydrogen production[J]. Small,
                                                                   2017, 13(16): 1604115.
                                                               [3]   MOON S Y, SONG H C, GWAG E H, et al. Plasmonic hot carrier-
                                                                   driven oxygen evolution reaction on Au nanoparticles/TiO 2 nanotube
                                                                   arrays[J]. Nanoscale, 2018, 10(47): 22180-22188.
                                                               [4]   ZHAO Y X, ZHAO Y F, SHI R, et al. Tuning oxygen vacancies in
                                                                   ultrathin TiO 2 nanosheets to boost photocatalytic nitrogen fixation up
                                                                   to 700 nm[J]. Advanced Materials, 2019, 31(16): 806482.
                                                               [5]   CAI J J, ZHOU  M H, PAN Y W,  et al. Extremely efficient
                                                                   electrochemical degradation of organic pollutants with co-generation
                                                                   of hydroxyl and sulfate radicals on Blue-TiO 2 nanotubes  anode[J].
                                                                   Applied Catalysis B: Environmental, 2019, 257: 117902.

            图 6   在可见光照射下,AP1.1 降解 MB 水溶液随反应时                  [6]   YUAN Y, HUANG G F, HU W Y, et al. Construction of g-C 3N 4/CeO 2/
                                                                   ZnO ternary photocatalysts with enhanced photocatalytic performance[J].
                  间变化的可见光吸收光谱(a);不同样品可见光催                          The Journal of Physics and Chemistry of Solids, 2017, 106: 1-9.
                  化降解 MB 水溶液的性能(b);降解 MB 的准一级                  [7]   ZHAO T, QIAN R F, ZHOU G D, et al. Mesoporous WO 3/TiO 2 spheres
                  动力学曲线(c);AP1.1 样品可见光催化降解 MB                      with tailored surface properties for concurrent solar photocatalysis
                                                                   and membrane filtration[J]. Chemosphere, 2021, 263: 128344.
                  溶液的循环实验(d)                                   [8]   SANCHEZ-TOVAR R, BLASCO-TAMARIT E, IBANEZ-ARLANDIS
            Fig. 6    Absorption spectra of MB aqueous solution degraded   L, et al. Novel TiO 2-WO 3 self-ordered nanotubes used as photoanodes:
                   by  AP1.1 with reaction  time under visible light   Influence of Na 2WO 4 and H 2O 2 concentration during electrodeposition[J].
                   irradiation (a); Catalytic degradation of MB aqueous   Surface & Coatings Technology, 2021, 415: 127124.
                   solution by visible light of different  samples (b);   [9]   IBRAHIM Y O, GONDAL M A. Visible-light-driven photocatalytic
                   Corresponding pseudo first-order kinetic curves under   performance of a  Z-scheme based TiO 2/WO 3/g-C 3N 4 ternary
                   visible light irradiation (c);  Cycling experiment of   heterojunctions[J]. Molecular Catalysis, 2021, 505: 111494.
                   photocatalytic degradation of MB over AP1.1  under   [10]  DU J, WANG Z, LI Y H, et al. Establishing WO 3/g-C 3N 4 composite
                   visible light irradiation (d)                   for “Memory” photocatalytic activity and enhancement in photocatalytic
                                                                   degradation[J]. Catalysis Letters, 2019, 149(5): 1167-1173.
                                                               [11]  LI G, HOU J J, ZHANG W L, et al. Graphene-bridged WO 3/MoS 2 Z-
            3   结论                                                 scheme photocatalyst for enhanced photodegradation  under visible
                                                                   light irradiation[J]. Materials Chemistry and Physics, 2020, 246:
                                                                   122827.
                 以水热温度为 120  ℃所合成的高活性 WO 3 /                   [12]  YAN M, WU Y L, ZHU F F,  et al. The fabrication of a novel
            Bi 2 WO 6 纳米片为基质,通过简单的水热法将锐钛矿                          Ag 3VO 4/WO 3 heterojunction with enhanced visible light  efficiency
                                                                   in  the photocatalytic degradation of TC[J]. Physical  Chemistry
            TiO 2 纳米颗粒(质量分数为 10.7%)负载在 WO 3 /                      Chemical Physics, 2016, 18(4): 3308-3315.
                                                               [13]  LIU H, ZHOU H L, LI H D, et al. Fabrication of Bi 2S 3@Bi 2WO 6/
            Bi 2 WO 6 纳米片的表面,得到了 TiO 2 /WO 3 /Bi 2 WO 6
            三元复合材料,并且采用一种高密度管状等离子体                                 WO 3 ternary photocatalyst with enhanced photocatalytic performance:
                                                                   Synergistic effect of Z-scheme/traditional heterojunction and oxygen
            放电装置对其进行表面改性。从形貌和发光强度上                                 vacancy[J]. Journal of the Taiwan Institute of Chemical  Engineers,
   105   106   107   108   109   110   111   112   113   114   115