Page 111 - 《精细化工》2022年第8期
P. 111
第 8 期 冷 超,等: 等离子体改性 TiO 2 /WO 3 /Bi 2 WO 6 纳米复合材料及其可见光催化活性 ·1611·
2019, 95: 94-102. [28] ZHANG M M, CUI L, LI B S, et al. Ultrathin oxygen-vacancy
[14] LI J Q, HAO H J, ZHU Z F. Construction of g-C 3N 4-WO 3-Bi 2WO 6 double abundant WO 3 decorated monolayer Bi 2WO 6 nanosheet: A 2D/2D
Z-scheme system with enhanced photoelectrochemical performance[J]. heterojunction for the degradation of Ciprofloxacin under visible and
Materials Letters, 2016, 168: 180-183. NIR light irradiation[J]. Journal of Colloid and Interface Science,
[15] JI B, ZHAO W F, DUAN J L, et al. Synthesis of TiO 2/WO 3 on nickel 2019, 556: 557-567.
foam for the photocatalytic degradation of ethylene[J]. Journal of [29] HAO W M, ZHAO L, LI X Q, et al. Cu nanoclusters incorporated
Inorganic Materials, 2020, 35: 581-589. mesoporous TiO 2 nanoparticles: An efficient and stable noble metal-
[16] ZHOU H R, WEN Z P, LIU J, et al. Z-scheme plasmonic Ag free photocatalyst for light driven H 2 generation[J]. International
decorated WO 3/Bi 2WO 6 hybrids for enhanced photocatalytic Journal of Hydrogen Energy, 2021, 46: 6461-6473.
abatement of chlorinated-VOCs under solar light irradiation[J]. [30] GUO X H, YANG H M, LIU J Y, et al. Synthesis of Bi 2WO 6
Applied Catalysis B: Environmental, 2019, 242: 76-84. composites by carbon adsorptionfor visible light photocatalytic
[17] WISZ G, SAWICKA-CHUDY P, YAVORSKYI R, et al. TiO 2/Cu 2O degradation of metronidazole[J]. Reaction Kinetics Mechanisms
heterojunctions for photovoltaic cells application produced by reactive Catalysis, 2017, 120: 809-820.
magnetron sputtering[J]. Materials Today: Proceedings, 2021, 35: [31] ZHU Z F, YAN Y, LI J Q. One-step synthesis of flower-like
552-557. WO 3/Bi 2WO 6 heterojunction with enhanced visible light photo
[18] HUNG W H, TENG Y J, TSENG C M, et al. Enhanced patterned catalytic activity[J]. Journal of Materials Science, 2015, 51(4):
cocatalyst TiO 2/Fe 2O 3 photoanodes for water-splitting[J]. Nanoscale 2112-2120.
Research Letters, 2021,16(1): 76. [32] ZHANG L S, WANG H L, CHEN Z G, et al. Bi 2WO 6 micro/nano-
[19] HOU H L, GAO F M, WANG L, et al. Superior thoroughly structures: Synthesis, modifications and visible-light-driven photo
mesoporous ternary hybrid photocatalysts of TiO 2/WO 3/g-C 3N 4 catalytic applications[J]. Applied Catalysis B: Environmental, 2011,
nanofibers for visible-light-driven hydrogen evolution[J]. Journal of 106(1/2): 1-13.
Materials Chemistry A, 2016, 4: 6276. [33] NAVARRETE-MAGAÑA M, ESTRELLA-GONZÁLEZ A, MAY-IX
[20] WANG Q, ZHANG W M, HU X R, et al. Hollow spherical WO 3/ L, et al. Improved photocatalytic oxidation of arsenic (Ⅲ) with WO 3/
TiO 2 heterojunction for enhancing photocatalytic performance in TiO 2 nanomaterials synthesized by the sol-gel method[J]. Journal of
visible-light[J]. Journal of Water Process Engineering, 2021, 40: 101943. Environmental Management, 2021, 282: 111602.
[21] KUMAR S G, RAO KSR K. Tungsten-based nanomaterials(WO 3 & [34] XIAO X, GUO S K, DING C, et al. CsPbBr 3@TiO 2 core-shell
Bi 2WO 6): Modifications related to charge carrier transfer mechanisms structure nanocomposite as water stable and efficient visible-light-
and photocatalytic applications[J]. Applied Surface Science, 2015, 355: driven photocatalyst[J]. Journal of Inorganic Materials, 2021, 36(5):
939-958. 507-512.
[22] LIU Z Y, WANG Q Y, RONG W Q, et al. CTAB assisted [35] KAVITHA S, JAYAMANI N, BARATHI D. A study on preparation
hydrothermal preparation of Bi 2WO 6-WO 3 nanosheets on TiO 2 of unique TiO 2/Cu 2O nanocomposite with highly efficient
nanotube arrays for photo electro catalytic applications[J]. Separation photocatalytic reactivity under visible-light irradiation[J]. Materials
and Purification Technology, 2018, 200: 191-197. Technology, 2021, 36(11): 670-683.
[23] LIU X H, HUA R N, NIU J H, et al. N 2 plasma treatment TiO 2 [36] HUANG Y K, KOU S W, ZHANG X T, et al. Facile fabrication of
nanosheets for enhanced visible light-driven photocatalysis[J]. Z-scheme Bi 2WO 6/WO 3 composites for efficient photodegradation of
Journal of Alloys and Compounds, 2021, 881: 160509. bisphenol A with peroxymono sulfate activation[J]. Nanomaterials,
[24] LI X J, QIAO G J, CHEN J R. Titanium oxide modified by plasma 2020, 10(4): 724.
and red-shift of its response spectrum[J]. Progress in Chemistry, [37] WANG R, XU M, XIE J W, et al. A spherical TiO 2-Bi 2WO 6
2007, 19(3): 220-224. composite photocatalyst for visible-light photocatalytic degradation
[25] GUO H, LI Z, XIANG L R, et al. Efficient removal of antibiotic of ethylene[J]. Colloids and Surfaces A: Physicochemical and
thiamphenicol by pulsed discharge plasma coupled with complex Engineering Aspects, 2020, 602: 125048.
catalysis using graphene-WO 3-Fe 3O 4 nanocomposites[J]. Journal of [38] CHEN X, LI Y X, LI L. Facet-engineered surface and interface
Hazardous Materials, 2021, 403: 123673. design of WO 3/Bi 2WO 6 photocatalyst with direct Z-scheme
[26] SHI D Q, XU W, MIAO C Y, et al. A high-activity nitrogen plasma heterojunction for efficient salicylic acid removal[J]. Applied Surface
flow source for deposition of silicon nitride films[J]. Surface & Science, 2020, 508: 144796.
Coatings Technology, 2016, 294: 194-200. [39] LIU Y H, KONG L, GUO X, et al. Surface oxygen vacancies on
[27] LI S L, MA C Y, ZHANG Q Y, et al. Ion nitriding of pure iron using WO 3 nanoplate arrays induced by Ar plasma treatment for efficient
high-density plasma beam generated by a tubular plasma source[J]. photoelectrochemical water oxidation[J]. The Journal of Physics and
Surface & Coatings Technology, 2017, 309: 47-53. Chemistry of Solids, 2021, 149: 109823.
(上接第 1602 页) Nano Letters, 2017, 17(2): 1090-1096.
[11] HUANG Y L, TIAN Y H, HANG C J, et al. Self-limited nanosoldering of [16] ZHANG K, LI J, FANG Y S, et al. Unraveling the solvent induced
silver nanowires for high-performance flexible transparent heaters[J]. welding of silver nanowires for high performance flexible transparent
ACS Applied Materials & Interfaces, 2019, 11(24): 21850-21858. electrodes[J]. Nanoscale, 2018, 10(27): 12981-12990.
[12] DUAN H G, BERGGREN K K. Directed self-assembly at the 10 nm [17] ZHANG Y, GUO J N, XU D, et al. One-pot synthesis and purification of
scale by using capillary force-induced nanocohesion[J]. Nano Letters, ultralong silver nanowires for flexible transparent conductive
2010, 10(9): 3710-3716. electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25465-
[13] HU Y L, LAO Z X, CUMMING B P, et al. Laser printing hierarchical 25473.
structures with the aid of controlled capillary-driven self-assembly[J]. [18] JIN Y X, WANG K Q, CHENG Y R, et al. Removable large-area
Proceedings of the National Academy of Sciences of the United ultrasmooth silver nanowire transparent composite electrode[J]. ACS
States of America, 2015, 112(22): 6876-6881. Applied Materials & Interfaces, 2017, 9(5): 4733-4741.
[14] CHENG S F, ROBBINS M O. Capillary adhesion at the nanometer [19] CHAE W H, SANNICOLO T, GROSSMAN J C. Double-sided
scale[J]. Physical Review E, 2014, 89(6):1-16. graphene oxide encapsulated silver nanowire transparent electrode
[15] LIU Y, ZHANG J M, GAO H, et al. Capillary-force-induced cold with improved chemical and electrical stability[J]. ACS Applied
welding in silver-nanowire-based flexible transparent electrodes[J]. Materials & Interfaces, 2020, 12(15): 17909-17920.