Page 111 - 《精细化工》2022年第8期
P. 111

第 8 期           冷   超,等:  等离子体改性 TiO 2 /WO 3 /Bi 2 WO 6 纳米复合材料及其可见光催化活性                 ·1611·


                 2019, 95: 94-102.                             [28]  ZHANG M M, CUI L, LI B S,  et al. Ultrathin oxygen-vacancy
            [14]  LI J Q, HAO H J, ZHU Z F. Construction of g-C 3N 4-WO 3-Bi 2WO 6 double   abundant WO 3 decorated monolayer Bi 2WO 6  nanosheet: A 2D/2D
                 Z-scheme system with enhanced photoelectrochemical performance[J].   heterojunction for the degradation of Ciprofloxacin under visible and
                 Materials Letters, 2016, 168: 180-183.            NIR light irradiation[J]. Journal of Colloid and Interface Science,
            [15]  JI B, ZHAO W F, DUAN J L, et al. Synthesis of TiO 2/WO 3 on nickel   2019, 556: 557-567.
                 foam for the photocatalytic degradation of ethylene[J]. Journal of   [29]  HAO W M, ZHAO L, LI X Q, et al. Cu nanoclusters incorporated
                 Inorganic Materials, 2020, 35: 581-589.           mesoporous TiO 2 nanoparticles: An efficient and stable noble metal-
            [16]  ZHOU  H R, WEN Z P, LIU J,  et al.  Z-scheme plasmonic Ag   free photocatalyst  for light driven H 2  generation[J]. International
                 decorated WO 3/Bi 2WO 6 hybrids for enhanced photocatalytic   Journal of Hydrogen Energy, 2021, 46: 6461-6473.
                 abatement of  chlorinated-VOCs under solar light irradiation[J].   [30]  GUO  X  H,  YANG H M, LIU J Y,  et al. Synthesis of Bi 2WO 6
                 Applied Catalysis B: Environmental, 2019, 242: 76-84.   composites by carbon adsorptionfor visible light photocatalytic
            [17]  WISZ G, SAWICKA-CHUDY P, YAVORSKYI R, et al. TiO 2/Cu 2O   degradation  of metronidazole[J]. Reaction Kinetics Mechanisms
                 heterojunctions for photovoltaic cells application produced by reactive   Catalysis, 2017, 120: 809-820.
                 magnetron  sputtering[J]. Materials Today: Proceedings,  2021, 35:   [31]  ZHU Z F, YAN Y, LI J Q. One-step synthesis of flower-like
                 552-557.                                          WO 3/Bi 2WO 6 heterojunction with enhanced visible light photo
            [18]  HUNG W H, TENG Y J, TSENG  C M, et al. Enhanced patterned   catalytic activity[J]. Journal of Materials Science, 2015, 51(4):
                 cocatalyst TiO 2/Fe 2O 3 photoanodes for water-splitting[J]. Nanoscale   2112-2120.
                 Research Letters, 2021,16(1): 76.             [32]  ZHANG L S, WANG H L, CHEN Z G, et al. Bi 2WO 6 micro/nano-
            [19]  HOU H L, GAO F M, WANG L,  et al. Superior thoroughly   structures:  Synthesis, modifications and visible-light-driven photo
                 mesoporous ternary hybrid photocatalysts of TiO 2/WO 3/g-C 3N 4   catalytic applications[J]. Applied Catalysis B: Environmental, 2011,
                 nanofibers for visible-light-driven hydrogen evolution[J]. Journal of   106(1/2): 1-13.
                 Materials Chemistry A, 2016, 4: 6276.         [33]  NAVARRETE-MAGAÑA M, ESTRELLA-GONZÁLEZ A, MAY-IX
            [20]  WANG Q, ZHANG W M, HU X R, et al. Hollow spherical WO 3/   L, et al. Improved photocatalytic oxidation of arsenic (Ⅲ) with WO 3/
                 TiO 2 heterojunction for enhancing photocatalytic performance in   TiO 2 nanomaterials synthesized by the sol-gel method[J]. Journal of
                 visible-light[J]. Journal of Water Process Engineering, 2021, 40: 101943.   Environmental Management, 2021, 282: 111602.
            [21]  KUMAR  S  G, RAO KSR K.  Tungsten-based  nanomaterials(WO 3  &   [34]  XIAO X, GUO S K, DING  C,  et al. CsPbBr 3@TiO 2  core-shell
                 Bi 2WO 6):    Modifications related to charge carrier transfer mechanisms   structure nanocomposite as water stable and efficient visible-light-
                 and photocatalytic applications[J]. Applied Surface Science, 2015, 355:   driven photocatalyst[J]. Journal of Inorganic Materials, 2021, 36(5):
                 939-958.                                          507-512.
            [22]  LIU Z  Y, WANG Q  Y,  RONG W Q,  et al. CTAB assisted   [35]  KAVITHA S, JAYAMANI N, BARATHI D. A study on preparation
                 hydrothermal preparation of Bi 2WO 6-WO 3 nanosheets on TiO 2   of unique TiO 2/Cu 2O nanocomposite with highly efficient
                 nanotube arrays for photo electro catalytic applications[J]. Separation   photocatalytic reactivity under  visible-light irradiation[J]. Materials
                 and Purification Technology, 2018, 200: 191-197.   Technology, 2021, 36(11): 670-683.
            [23]  LIU X H, HUA  R N, NIU J H,  et al. N 2 plasma treatment  TiO 2   [36]  HUANG Y K, KOU S W, ZHANG X T, et al. Facile fabrication of
                 nanosheets for enhanced visible light-driven  photocatalysis[J].   Z-scheme Bi 2WO 6/WO 3 composites for efficient photodegradation of
                 Journal of Alloys and Compounds, 2021, 881: 160509.   bisphenol A with peroxymono sulfate activation[J]. Nanomaterials,
            [24]  LI X J, QIAO G J, CHEN J R. Titanium oxide modified by plasma   2020, 10(4): 724.
                 and red-shift of its response spectrum[J]. Progress in Chemistry,   [37]  WANG  R, XU M, XIE J W,  et al. A spherical TiO 2-Bi 2WO 6
                 2007, 19(3): 220-224.                             composite photocatalyst for visible-light photocatalytic degradation
            [25]  GUO H, LI  Z,  XIANG L  R,  et al. Efficient removal of antibiotic   of ethylene[J]. Colloids and Surfaces A: Physicochemical and
                 thiamphenicol by pulsed discharge plasma coupled with complex   Engineering Aspects, 2020, 602: 125048.
                 catalysis using graphene-WO 3-Fe 3O 4 nanocomposites[J]. Journal of   [38]  CHEN X, LI Y X, LI L. Facet-engineered surface and interface
                 Hazardous Materials, 2021, 403: 123673.           design of WO 3/Bi 2WO 6  photocatalyst with  direct  Z-scheme
            [26]  SHI D Q, XU W, MIAO C Y, et al. A high-activity nitrogen plasma   heterojunction for efficient salicylic acid removal[J]. Applied Surface
                 flow source for deposition  of silicon nitride films[J]. Surface &   Science, 2020, 508: 144796.
                 Coatings Technology, 2016, 294: 194-200.      [39]  LIU Y H, KONG  L, GUO X,  et al. Surface oxygen vacancies on
            [27]  LI S L, MA C Y, ZHANG Q Y, et al. Ion nitriding of pure iron using   WO 3 nanoplate arrays induced by Ar plasma treatment for efficient
                 high-density plasma beam generated by a tubular plasma source[J].   photoelectrochemical water oxidation[J]. The Journal of Physics and
                 Surface & Coatings Technology, 2017, 309: 47-53.   Chemistry of Solids, 2021, 149: 109823.


            (上接第 1602 页)                                           Nano Letters, 2017, 17(2): 1090-1096.
            [11]  HUANG Y L, TIAN Y H, HANG C J, et al. Self-limited nanosoldering of   [16]  ZHANG K, LI J, FANG Y S, et al. Unraveling the solvent induced
                 silver nanowires for high-performance flexible transparent heaters[J].   welding of silver nanowires for high performance flexible transparent
                 ACS Applied Materials & Interfaces, 2019, 11(24): 21850-21858.   electrodes[J]. Nanoscale, 2018, 10(27): 12981-12990.
            [12]  DUAN H G, BERGGREN K K. Directed self-assembly at the 10 nm   [17]  ZHANG Y, GUO J N, XU D, et al. One-pot synthesis and purification of
                 scale by using capillary force-induced nanocohesion[J]. Nano Letters,   ultralong silver nanowires for flexible transparent conductive
                 2010, 10(9): 3710-3716.                           electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25465-
            [13]  HU Y L, LAO Z X, CUMMING B P, et al. Laser printing hierarchical   25473.
                 structures with the aid of controlled capillary-driven self-assembly[J].   [18]  JIN Y X, WANG  K Q, CHENG Y R, et al. Removable large-area
                 Proceedings of the National Academy of Sciences of the United   ultrasmooth silver nanowire transparent composite electrode[J]. ACS
                 States of America, 2015, 112(22): 6876-6881.      Applied Materials & Interfaces, 2017, 9(5): 4733-4741.
            [14]  CHENG S F, ROBBINS M O. Capillary adhesion at the nanometer   [19]  CHAE W H, SANNICOLO T, GROSSMAN J C. Double-sided
                 scale[J]. Physical Review E, 2014, 89(6):1-16.    graphene oxide encapsulated silver nanowire transparent electrode
            [15]  LIU  Y, ZHANG J  M, GAO H,  et al. Capillary-force-induced cold   with improved chemical  and electrical stability[J]. ACS Applied
                 welding in silver-nanowire-based flexible  transparent  electrodes[J].   Materials & Interfaces, 2020, 12(15): 17909-17920.
   106   107   108   109   110   111   112   113   114   115   116