Page 132 - 《精细化工》2022年第8期
P. 132

·1632·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 and their biomedical applications[J]. Journal of Materials Chemistry   [18]  YANG W T (杨万泰). Characterization and testing  of polymer
                 B, 2019, 7(47): 7471-7489.                        materials[M]. Beijing: China Light Industry Press (中国轻工业出版
            [9]   AMBARD A J, MUENINGHOFF L. Calcium phosphate cement:   社), 2017.
                 Review of  mechanical and biological properties[J]. Journal of   [19]  LEE J H, PARK T G, PARK H S,  et al. Thermal  and mechanical
                 Prosthodontics-Implant Esthetic & Reconstructive Dentistry, 2010,   characteristics of poly(L-lactic acid) nanocomposite scaffold[J].
                 15(5): 321-328.                                   Biomaterials, 2003, 24(16): 2773-2778.
            [10]  SALEH A T, RAHEEM A A. Injectable calcium phosphate cements   [20]  WU L  H (吴丽煌), JIN M J (金明江), LIU J N (刘剑楠),  et al.
                 (CPCS) mechanical, applications properties and biological in the   Preparation and biocompatibility of hierarchical porous structure on
                 drug  delivery: A  review[J].  International Research Journal  of   Ti alloys surface  via integrated processes[J]. Journal of Functional
                 Modernization in Engineering Technology and  Science, 2021, 3(2):   Materials (功能材料), 2021, 52(7): 07024-07031.
                 887-895.                                      [21]  KANDALAM  U,  BOUVIER A J, CASAS S B,  et al. Novel bone
            [11]  OH S A,  LEE G  S, PARK J H,  et al. Osteoclastic cell  behaviors   adhesives: A comparison of bond strengths in vitro[J]. International
                 affected by the tricalcium phosphate based bone cements[J]. Journal   Journal of Oral and Maxillofacial Surgery, 2013, 42: 1054-1059.
                 of Materials Science Materials in Medicine, 2010, 21(11): 3019-3027.     [22]  CHANG C H, LIAO T C, HSU Y  M,  et al. A poly(propylene
            [12]  LI J M (李均明),  ZHANG J (张姣),  WANG A J (王爱娟),  et al.   fumarate)-calcium  phosphate based  angiogenic injectable bone
                 Research progress in the bonding  properties  of medical bone   cement for  femoral head osteonecrosis[J]. Biomaterials, 2010,
                 adhesives[J]. Materials Reports (材料导报), 2013, 27(13): 145-147.     31(14): 4048- 4055.
            [13]  WANG C (王琛), LU S X (路思娴), WANG L (王亮). Synthesis and   [23]  HUANG S Q (黄世桥), GAO H (高辉). Cyanoacrylate as a bone
                 thermo-/UV-curing  behavior  of  poly(butyl  fumarate)-based  adhesive: Its potential and superiority in fracture repair[J]. Chinese
                 composites[J]. Fine Chemicals (精细化工), 2019, 36(8): 1543-1549.     Journal of Tissue Engineering Research (中国组织工程研究), 2016,
            [14]  KLIMISCH H J, DECKARDT K, GEMBARDT C, et al. Long-term   20(43): 6501-6506.
                 inhalation toxicity of  N-vinylpyrrolidone-2 vapours. Studies in   [24]  REILLY D T, BURSTEIN A H. The mechanical properties of cortical
                 rats[J]. Food and Chemical Toxicology, 1997, 35(10/11): 1041-1060.     bone[J]. Journal of Bone & Joint Surgery, 1974, 56(5): 1001-1022.
            [15]  ISO Technical Committees. Biological evaluation of medical devices  [25]  ZHAO X, OLSEN I, LI H Y,  et al. Reactive calcium-phosphate-
                 —Part 5: Tests for in vitro cytotoxicity: ISO 10993—2009[S]. Geneva,   containing poly(ester-co-ether) methacrylate bone adhesives: Chemical,
                 Switzerland, 2009: 1-13.                          mechanical  and biological considerations[J]. Acta  Biomaterialia,
            [16]  CAI Z Y, WAN Y, BECKER M L, et al. Poly(propylene fumarate)-   2010, 6(3): 845-855.
                 based materials: Synthesis, functionalization, properties, device   [26]  WANG M O, ETHERIDGE J M, THOMPSON J A, et al. Evaluation
                 fabrication and biomedical applications[J]. Biomaterials, 2019, 208:   of the  in vitro cytotoxicity of cross-linked biomaterials[J].
                 45-71.                                            Biomacromolecules, 2013, 14(5): 1321-1329.
            [17]  WANG L, GUO D G, ZHU H, et al. Light emitting diodes (LEDs)   [27]  DÍEZ-PASCUL A M, DÍEZ-VICENTE A  L. Poly(propylene
                 encapsulation of  polymer composites based on  poly(propylene   fumarate)/polyethylene  glycol-modified  graphene  oxide
                 fumarate) crosslinked with poly(propylene fumarate)-diacrylate[J].   nanocomposites for tissue engineering[J]. ACS Applied Materials
                 RSC Adv, 2015, 5: 52888-52895.                    and Interfaces, 2016, 8(28): 17902-17914.

            (上接第 1595 页)                                       [65]  MANTRIPRAGADA H,  ZHAI H, RUBIN E S. Boundary dam or
            [57]  CLODIC D, YOUNES M. A new method for CO 2 capture frosting   petra nova-Which is a better model for CCS?[J]. International
                 CO 2 at  atmospheric pressure[C]//Greenhouse Gas Control   Journal of Greenhouse Gas Control, 2019, 82: 59-68.
                 Technologies-6th International Conference, 2003: 155-160.     [66]  PATEL P. Can carbon capture and storage deliver on its promise?[J]
            [58]  TUINIER M J, ANNALAND M, KRAMER  G J,  et al. Cryogenic   MRS Bulletin, 2017, 42(3): 188-189.
                 CO 2 capture using dynamically operated packed beds[J].  Chemical   [67]  WANG D(王丹). Full chain analysis, integration and optimization of
                 Engineering Science, 2010, 65(1): 114-119.        CO 2 capture, utilization and storage technology[D]. Beijing: University
            [59]  SONG C F, KITAMURA Y, LI S H. Evaluation of stirling cooler   of Chinese Academy of Sciences (中国科学院大学), 2020.
                 system for cryogenic CO 2 capture[J]. Applied Energy, 2012, 98(1):   [68]  WILBERFORCE  T, OLABI  A G, SAYED  E T,  et al.  Progress in
                 491-501.                                          carbon capture technologies[J]. Science of the  Total Environment,
            [60]  BABAR M, MUKHTAR A, MUBASGIR M, et al. Development of a   2021, 761: 143203-143214.
                 novel switched packed bed process for cryogenic CO 2 capture from   [69]  BOUNACEUR  R, LAPE N, ROIZARD D,  et al.  Membrane
                 natural gas[J]. Process Safety  and Environmental Protection, 2021,   processes for post-combustion carbon dioxide capture: A parametric
                 147: 878-997.                                     study[J]. Energy, 2006, 31(14): 2556-2570.
            [61]  CANN D, FONT-PALMA C, WILLSON P. Experimental analysis of   [70]  MERKEL T C, LIN H, WEI X, et al. Power plant post-combustion
                 CO 2 frost front behaviour in moving packed beds for cryogenic CO 2   carbon dioxide capture: An opportunity for membranes[J]. Journal of
                 capture[J]. International Journal of Greenhouse Gas Control, 2021,   Membrane Science, 2010, 359(1/2): 126-139.
                 107: 103291-103300.                           [71]  FREEMAN  B, HAO P, BAKER  R,  et al. Hybrid membrane-
            [62]  VEGA F,  BAENA-MORENO F M, FERNANDZE L  M G,  et al.   absorption CO 2 capture process[J]. Energy Procedia, 2014, 63: 605-613.
                 Current status of CO 2 chemical absorption research applied to CCS:   [72]  ANANTHARAMAN R,  BERSTAD D,  ROUSSANALY S.
                 Towards full deployment at industrial scale[J]. Applied Energy, 2020,   Techno-economic performance of a hybrid membrane-liquefaction
                 260: 114313-114332.                               process for post-combustion CO 2 capture[J]. Energy Procedia, 2014,
            [63]  STEPHENNE  K. Start-up  of world's first commercial post-   61: 1244-1247.
                 combustion coal fired CCS project: Contribution of shell cansolv to   [73]  ZHAO L, PRIMABUDI E, STOLTEN D. Investigation of a hybrid
                 SaskPower boundary dam ICCS project[J]. Energy Procedia, 2014,   system for post-combustion capture[J]. Energy Procedia, 2014, 63:
                 63(32): 6106-6110.                                1756-1772.
            [64]  PRESTON C K, BRUCE C, MONEA M J. An update report on the   [74]  BOUCHRA B, MOULLEC Y L,  WILLSON D,  et al. Hybrid
                 integrated CCS project at SaskPower's boundary dam power station[C]//   membrane cryogenic process for post-combustion CO 2 capture[J].
                 14th Greenhouse Gas Control Technologies Conference, 2018.     Journal of Membrane Science, 2012, 415/416: 424-434.
   127   128   129   130   131   132   133   134   135   136   137