Page 108 - 《精细化工》2023年第1期
P. 108

·100·                             精细化工   FINE CHEMICALS                                 第 40 卷

                 2017, 57: 43-49.                              [28]  CUI N, XIAO J  M, FENG Y J,  et al. Antioxidants enhance lipid
            [13]  WANG S, LAN C Z, WANG Z J, et al. Optimizing eicosapentaenoic   productivity in Heveochlorella sp. Yu[J]. Algal Research, 2021, 55:
                 acid production  by grafting a heterologous  polyketide synthase   102235.
                 pathway in the Thraustochytrid  Aurantiochytrium[J]. Journal of   [29]  ZHAO Y T,  LI D F, XU J W,  et al. Melatonin enhances lipid
                 Agricultural and Food Chemistry, 2020, 68: 11253-11260.   production in Monoraphidium sp. QLY-1 under nitrogen deficiency
            [14]  JAKHWAL P, BISWAS J K, TIWARI A,  et al.  Genetic and   conditions via a multi-level mechanism[J]. Bioresource Technology,
                 non-genetic tailoring of microalgae for the enhanced production of   2018, 259: 46-53.
                 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A   [30]  SINGH D, MATHUR A S, TULI D K,  et al. Propyl  gallate and
                 review[J]. Bioresource Technology, 2022, 344: 126250.   butylated hydroxytoluene influence the accumulation of saturated
            [15]  REN L J, SUN X M, JI X J, et al. Enhancement of docosahexaenoic   fatty acids, omega-3 fatty acid and carotenoids in thraustochytrids[J].
                 acid synthesis by  manipulation of antioxidant capacity  and   Functional Foods, 2015, 15: 186-192.
                 prevention of oxidative damage in Schizochytrium sp[J]. Bioresource   [31]  LI D F, ZHAO Y T, DING W, et al. A strategy for promoting lipid
                 Technology, 2017, 223: 141-148.                   production  in green microalgae  Monoraphidium sp. QLY-1 by
            [16]  LIU B, JIN L, SUN P P, et al. Sesamol enhances cell growth and the   combined melatonin and photoinduction[J]. Bioresource Technology,
                 biosynthesis and  accumulation of docosahexaenoic acid in the   2017, 235: 104-112.
                 microalga  Crypthecodinium cohnii[J].  Journal of Agricultural and   [32]  DIAO J J, SONG X Y, CUI J Y, et al. Rewiring metabolic network by
                 Food Chemistry, 2015, 63: 5640-5645.              chemical  modulator based  laboratory evolution doubles lipid
            [17]  CHE R Q, DING K, HUANG L, et al. Enhancing biomass and oil   production in  Crypthecodinium cohnii[J]. Metabolic Engineering,
                 accumulation of  Monoraphidium sp. FXY-10 by combined fulvic   2019, 51: 88-98.
                 acid and two-step cultivation[J]. Journal of  Taiwan Institute of   [33]  BARTEN R, KLEISMAN M, D'ERMO G, et al. Short-term physiologic
                 Chemical Engineers, 2016, 67: 161-165.            response of the green microalga  Picochlorum sp.  (BPE23) to
            [18]  SUN X M, REN L J, ZHAO Q Y, et al. Application of chemicals for   supra-optimal temperature[J]. Scientific Reports, 2022, 12: 3290.
                 enhancing lipid production in microalgae—A short review[J].   [34]  GOIRIS K, VAN COLEN W, WILCHES I, et al. Impact of nutrient
                 Bioresource Technology, 2019, 293: 122135.        stress on antioxidant production in three species of microalgae[J].
            [19]  ZHANG Y  J,  GAO W  Y, LYU Y W, et al. Enhanced  melatonin   Algal Research, 2015, 7: 51-57.
                 production  via aralkylamine  N-acetyltransferase overexpression   [35]  DONG X Z(董训赞), CHE R Q(车绕琼), ZHAO Y T(赵永腾), et al.
                 enhances NaCl resistance in transgenic Chlamydomonas reinhardtii   Fulvic acid  versus  Monoraphidium sp.  effects of FXY-10 lipid
                 (Volvocales, Chlorophyceae)[J]. Phycologia, 2019, 58: 154-162.   synthesis[J]. Oceans and Limnies(海洋与湖沼), 2018, 49(4): 815-820.
            [20]  ZHANG S, HE Y D, SEN B, et al. Alleviation of reactive oxygen   [36]  SHALABY E  A,  SHANAB S.  Antioxidant compounds, assays of
                 species enhances PUFA accumulation in Schizochytrium sp. through   determination and  mode of action[J]. African Journal of Pharmacy
                 regulating genes  involved in lipid  metabolism[J].  Metabolic   and Pharmacology, 2013, 7: 528-539.
                 Engineering Communications, 2018, 6: 39-48.   [37]  ALMENDINGER M, SAALFRANK F, ROHN  S, et al.
            [21]  MANNING S R. Microalgal lipids: Biochemistry and biotechnology[J].   Characterization of selected microalgae and cyanobacteria as sources
                 Current Opinion in Biotechnology, 2022, 74: 1-7.   of compounds with antioxidant capacity[J]. Algal  Research, 2021,
            [22]  SHANG M M(尚敏敏), ZHAO Y T(赵永腾), ZHAO P(赵鹏), et al.   53: 102168.
                 Effects of fulvic  acid on the  accumulation of  astaxanthin and the   [38]  SAHA S K, MOANE S, MURRAY P, et al.  Effect of macro- and
                 expression of CHY gene in Haematococcus halibutyl[J]. Hydrobiology   micro-nutrient limitation  on superoxide dismutase activities and
                 (水生生物学报), 2016, 40:488-492.                       carotenoid  levels in microalga  Dunaliella salina CCAP 19/18[J].
            [23]  ZHANG  G  X, YANG B X,  SHAO L Z, et  al. Differences  in   Bioresour Technol, 2013, 147: 23-28.
                 bioaccumulation of Ni and Zn by microalgae in the presence of fulvic   [39]  PANDIT P R, FULEKAR M H, KARUNA M, et al. Effect of salinity
                 acid[J]. Chemosphere, 2022, 291: 132838.          stress on growth,  lipid productivity, fatty acid composition, and
            [24]  CHE R Q, HUANG L, XU J W, et al. Effect of fulvic acid induction   biodiesel properties in  Acutodesmus obliquus and  Chlorella
                 on  the physiology,  metabolism,  and lipid biosynthesis-related gene   vulgaris[J]. Environmental Science  and Pollution Research, 2017,
                 transcription of Monoraphidium sp FXY-10[J]. Bioresource Technology,   24: 13437-13451.
                 2017, 227: 324-334.                           [40]  GOIRIS K, MUYLAERT K, FRAEYE I, et al. Antioxidant potential
            [25]  LI X M, LI X Y, HAN B Y, et al. Improvement in lipid production in   of microalgae in relation to their phenolic and carotenoid content[J].
                 Monoraphidium sp. QLY-1 by combining fulvic acid treatment and   Journal of Applied Phycology, 2012, 24: 1477-1486.
                 salinity stress[J]. Bioresource Technology, 2019, 294: 122179.   [41]  THIYAGARJAN  S, ARUMUGAM M, KATHIRESAN S.
            [26]  LI Y Q, XU H, HAN F X, et al. Regulation of lipid metabolism in the   Identification  and functional  characterization of two novel fatty  acid
                 green microalga  Chlorella protothecoides by heterotrophy-   genes from marine microalgae for eicosapentaenoic acid production[J].
                 photoinduction cultivation regime[J]. Bioresource Technology, 2015,   Applied Biochemistry and Biotechnology, 2020, 190: 1371-1384.
                 192: 781-791.                                 [42]  POLINER E, PULMAN J A, ZIENKIEWICZ K, et al. A toolkit for
            [27]  WANG  X,  LUO S W, LUO W H Y,  et al. Adaptive evolution of   Nannochloropsis oceanica CCMP1779 enables gene stacking and
                 microalgal strains empowered by fulvic acid for enhanced   genetic engineering of the eicosapentaenoic acid pathway for
                 polyunsaturated fatty acid production[J].  Bioresource  Technology,   enhanced long-chain polyunsaturated fatty acid production[J]. Plant
                 2019, 277: 204-210.                               Biotechnology, 2018, 16: 298-309.
   103   104   105   106   107   108   109   110   111   112   113