Page 108 - 《精细化工》2023年第1期
P. 108
·100· 精细化工 FINE CHEMICALS 第 40 卷
2017, 57: 43-49. [28] CUI N, XIAO J M, FENG Y J, et al. Antioxidants enhance lipid
[13] WANG S, LAN C Z, WANG Z J, et al. Optimizing eicosapentaenoic productivity in Heveochlorella sp. Yu[J]. Algal Research, 2021, 55:
acid production by grafting a heterologous polyketide synthase 102235.
pathway in the Thraustochytrid Aurantiochytrium[J]. Journal of [29] ZHAO Y T, LI D F, XU J W, et al. Melatonin enhances lipid
Agricultural and Food Chemistry, 2020, 68: 11253-11260. production in Monoraphidium sp. QLY-1 under nitrogen deficiency
[14] JAKHWAL P, BISWAS J K, TIWARI A, et al. Genetic and conditions via a multi-level mechanism[J]. Bioresource Technology,
non-genetic tailoring of microalgae for the enhanced production of 2018, 259: 46-53.
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A [30] SINGH D, MATHUR A S, TULI D K, et al. Propyl gallate and
review[J]. Bioresource Technology, 2022, 344: 126250. butylated hydroxytoluene influence the accumulation of saturated
[15] REN L J, SUN X M, JI X J, et al. Enhancement of docosahexaenoic fatty acids, omega-3 fatty acid and carotenoids in thraustochytrids[J].
acid synthesis by manipulation of antioxidant capacity and Functional Foods, 2015, 15: 186-192.
prevention of oxidative damage in Schizochytrium sp[J]. Bioresource [31] LI D F, ZHAO Y T, DING W, et al. A strategy for promoting lipid
Technology, 2017, 223: 141-148. production in green microalgae Monoraphidium sp. QLY-1 by
[16] LIU B, JIN L, SUN P P, et al. Sesamol enhances cell growth and the combined melatonin and photoinduction[J]. Bioresource Technology,
biosynthesis and accumulation of docosahexaenoic acid in the 2017, 235: 104-112.
microalga Crypthecodinium cohnii[J]. Journal of Agricultural and [32] DIAO J J, SONG X Y, CUI J Y, et al. Rewiring metabolic network by
Food Chemistry, 2015, 63: 5640-5645. chemical modulator based laboratory evolution doubles lipid
[17] CHE R Q, DING K, HUANG L, et al. Enhancing biomass and oil production in Crypthecodinium cohnii[J]. Metabolic Engineering,
accumulation of Monoraphidium sp. FXY-10 by combined fulvic 2019, 51: 88-98.
acid and two-step cultivation[J]. Journal of Taiwan Institute of [33] BARTEN R, KLEISMAN M, D'ERMO G, et al. Short-term physiologic
Chemical Engineers, 2016, 67: 161-165. response of the green microalga Picochlorum sp. (BPE23) to
[18] SUN X M, REN L J, ZHAO Q Y, et al. Application of chemicals for supra-optimal temperature[J]. Scientific Reports, 2022, 12: 3290.
enhancing lipid production in microalgae—A short review[J]. [34] GOIRIS K, VAN COLEN W, WILCHES I, et al. Impact of nutrient
Bioresource Technology, 2019, 293: 122135. stress on antioxidant production in three species of microalgae[J].
[19] ZHANG Y J, GAO W Y, LYU Y W, et al. Enhanced melatonin Algal Research, 2015, 7: 51-57.
production via aralkylamine N-acetyltransferase overexpression [35] DONG X Z(董训赞), CHE R Q(车绕琼), ZHAO Y T(赵永腾), et al.
enhances NaCl resistance in transgenic Chlamydomonas reinhardtii Fulvic acid versus Monoraphidium sp. effects of FXY-10 lipid
(Volvocales, Chlorophyceae)[J]. Phycologia, 2019, 58: 154-162. synthesis[J]. Oceans and Limnies(海洋与湖沼), 2018, 49(4): 815-820.
[20] ZHANG S, HE Y D, SEN B, et al. Alleviation of reactive oxygen [36] SHALABY E A, SHANAB S. Antioxidant compounds, assays of
species enhances PUFA accumulation in Schizochytrium sp. through determination and mode of action[J]. African Journal of Pharmacy
regulating genes involved in lipid metabolism[J]. Metabolic and Pharmacology, 2013, 7: 528-539.
Engineering Communications, 2018, 6: 39-48. [37] ALMENDINGER M, SAALFRANK F, ROHN S, et al.
[21] MANNING S R. Microalgal lipids: Biochemistry and biotechnology[J]. Characterization of selected microalgae and cyanobacteria as sources
Current Opinion in Biotechnology, 2022, 74: 1-7. of compounds with antioxidant capacity[J]. Algal Research, 2021,
[22] SHANG M M(尚敏敏), ZHAO Y T(赵永腾), ZHAO P(赵鹏), et al. 53: 102168.
Effects of fulvic acid on the accumulation of astaxanthin and the [38] SAHA S K, MOANE S, MURRAY P, et al. Effect of macro- and
expression of CHY gene in Haematococcus halibutyl[J]. Hydrobiology micro-nutrient limitation on superoxide dismutase activities and
(水生生物学报), 2016, 40:488-492. carotenoid levels in microalga Dunaliella salina CCAP 19/18[J].
[23] ZHANG G X, YANG B X, SHAO L Z, et al. Differences in Bioresour Technol, 2013, 147: 23-28.
bioaccumulation of Ni and Zn by microalgae in the presence of fulvic [39] PANDIT P R, FULEKAR M H, KARUNA M, et al. Effect of salinity
acid[J]. Chemosphere, 2022, 291: 132838. stress on growth, lipid productivity, fatty acid composition, and
[24] CHE R Q, HUANG L, XU J W, et al. Effect of fulvic acid induction biodiesel properties in Acutodesmus obliquus and Chlorella
on the physiology, metabolism, and lipid biosynthesis-related gene vulgaris[J]. Environmental Science and Pollution Research, 2017,
transcription of Monoraphidium sp FXY-10[J]. Bioresource Technology, 24: 13437-13451.
2017, 227: 324-334. [40] GOIRIS K, MUYLAERT K, FRAEYE I, et al. Antioxidant potential
[25] LI X M, LI X Y, HAN B Y, et al. Improvement in lipid production in of microalgae in relation to their phenolic and carotenoid content[J].
Monoraphidium sp. QLY-1 by combining fulvic acid treatment and Journal of Applied Phycology, 2012, 24: 1477-1486.
salinity stress[J]. Bioresource Technology, 2019, 294: 122179. [41] THIYAGARJAN S, ARUMUGAM M, KATHIRESAN S.
[26] LI Y Q, XU H, HAN F X, et al. Regulation of lipid metabolism in the Identification and functional characterization of two novel fatty acid
green microalga Chlorella protothecoides by heterotrophy- genes from marine microalgae for eicosapentaenoic acid production[J].
photoinduction cultivation regime[J]. Bioresource Technology, 2015, Applied Biochemistry and Biotechnology, 2020, 190: 1371-1384.
192: 781-791. [42] POLINER E, PULMAN J A, ZIENKIEWICZ K, et al. A toolkit for
[27] WANG X, LUO S W, LUO W H Y, et al. Adaptive evolution of Nannochloropsis oceanica CCMP1779 enables gene stacking and
microalgal strains empowered by fulvic acid for enhanced genetic engineering of the eicosapentaenoic acid pathway for
polyunsaturated fatty acid production[J]. Bioresource Technology, enhanced long-chain polyunsaturated fatty acid production[J]. Plant
2019, 277: 204-210. Biotechnology, 2018, 16: 298-309.