Page 39 - 《精细化工》2023年第1期
P. 39

第 1 期                     刘   涛,等:  基于有序多孔材料磷酸盐吸附剂的研究进展                                   ·31·


                 47-53.                                        [67]  ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in
            [50]  HAO X S, LU G Q, WHITTAKER A K, et al. Comprehensive study   metal-organic frameworks[J]. Angewandte Chemie International
                 of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR,   Edition, 2005, 44: 4670-4679.
                 pyridine-TPD, and TGA[J]. Journal of Physical Chemistry B, 1997,   [68]  LIN K  Y A, CHEN S Y, JOCHEMS A P. Zirconium-based metal
                 (101): 6525-6531.                                 organic frameworks: Highly selective adsorbents for removal of
            [51]  WANG C Z (王程斋), ZHU Z H (朱志慧), WANG T (王婷), et al.   phosphate from water and urine[J]. Materials Chemistry and Physics,
                 Performance of QA-MCM-41 adsorbent for  nitrate and phosphate   2015, 160: 168-176.
                 removal[J]. Chinese Journal of Environmental Engineering (环境工  [69]  LIU H, GUO W, LIU Z H, et al. Effective adsorption of phosphate
                 程学报), 2017, 11(12): 6217-6225.                    from aqueous solution by La-based  metal-organic frameworks[J].
            [52]  PHAM T H, LEE K M, KIM M S, et al. La-modified ZSM-5 zeolite   RSC Advances, 2016, 6: 105282.
                 beads for enhancement in removal and recovery of phosphate[J].   [70]  ZHANG  Q, SANG Z L, LI Q P, et al. Facile fabrication of La/Ca
                 Microporous and Mesoporous Materials, 2019, 279: 37-44.   bimetal-organic frameworks for economical and efficient remove
            [53]  HUANG W Y, YU X,  TANG J P,  et al. Enhanced adsorption  of   phosphorus from water[J]. Journal of Molecular Liquids, 2022, 356:
                 phosphate by flower-like mesoporous silica spheres loaded with   119024.
                 lanthanum[J]. Microporous and Mesoporous Materials, 2015, 217:   [71]  MIN X  Y, WU  X, SHAO P H,  et al. Ultra-high capacity of
                 225-232.                                          lanthanum- doped UiO-66 for phosphate capture: Unusual doping of
            [54]  FU H Y, YANG  Y X, ZHU  R L, et  al. Superior adsorption of   lanthanum by the  reduction of coordination number[J]. Chemical
                 phosphate  by  ferrihydrite-coated  and  lanthanum-decorated  Engineering Journal, 2019, 358: 321-330.
                 magnetite[J]. Journal of Colloid and Interface Science,  2018, 530:   [72]  TAN K,  NIJEM N, GAO Y Z,  et al. Water interactions in metal
                 704-713.                                          organic frameworks[J]. CrystEngComm, 2015, 17(2): 247-260.
            [55]  WU Y, LI X M, YANG Q, et al. Hydrated lanthanum oxide-modified   [73]  ZHANG J D, SHEN Z M, SHAN W P, et al. Adsorption behavior of
                 diatomite as highly efficient adsorbent for low-concentration   phosphate on lanthanum(Ⅲ)-coordinated diamino-functionalized 3D
                 phosphate removal from secondary effluents[J]. Journal of Environmental   hybrid mesoporous silicates material[J]. Journal of  Hazardous
                 Management, 2019, 231: 370-379.                   Materials, 2011, 186: 76-83.
            [56]  KOILRAJ P, SASAKI K. Selective removal of phosphate using   [74]  XIE J, WANG Z, LU S Y, et al. Removal and recovery of phosphate
                 La-porous carbon  composites from aqueous solutions:  Batch and   from water by lanthanum hydroxide materials[J]. Chemical Engineering
                 column studies[J]. Chemical Engineering Journal, 2017, 317:   Journal, 2014, 254: 163-170.
                 1059-1068.                                    [75]  LIU H  L, SUN X F, YIN  C  Q,  et al. Removal of phosphate by
            [57]  HE  Y H, LIN H, DONG  Y B,  et al. Preferable adsorption of   mesoporous ZrO 2[J]. Journal of Hazardous Materials, 2008, 151:
                 phosphate  using  lanthanum-incorporated  porous  zeolite:  616-622.
                 Characteristics and mechanism[J].  Applied  Surface Science, 2017,   [76]  YOON S  Y, LEE  C G, PARK J  A,  et al. Kinetic, equilibrium and
                 426: 995-1004.                                    thermodynamic studies for phosphate adsorption to magnetic iron
            [58]  LI J R, WANG F K, XIAO H, et al. Layered chalcogenide modified   oxide nanoparticles[J]. Chemical Engineering  Journal, 2014, 236:
                 by Lanthanum, calcium and magnesium for the removal of phosphate   341-347.
                 from water[J]. Colloids and  Surfaces A-Physicochemical and   [77]  LIU T (刘涛), JU  X Q (居小秋),  ZHEN S R (郑寿荣). Phosphate
                 Engineering Aspects, 2019, 560: 306-314.          adsorption by aluminum oxide doped with lanthanum hydroxide[J].
            [59]  WANG L, WANG J  Y, HE C,  et al. Development of rare earth   Research of Environmental Sciences (环境科学研究), 2022, 25(4):
                 element doped magnetic biochars with enhanced phosphate   1016-1024.
                 adsorption performance[J]. Colloids and Surfaces A-Physicochemical   [78]  YANG Q, WANG X L, LUO W, et al. Effectiveness and mechanisms
                 and Engineering Aspects, 2019, 561: 236-243.      of phosphate adsorption  on iron-modified biochars  derived from
            [60]  TANG Y Q (唐玉琼), TANG L (唐亮), WAN H Q (万海勤), et al.   waste activated sludge[J]. Bioresoure Technology, 2018, 247:
                 Adsorption of phosphate onto zirconized hexagonal mesoporous   537-544.
                 silica[J]. Environmental Chemistry (环境化学), 2011, 30(8): 1383-   [79]  QIU H, LIANG C, YU J H, et al. Preferable phosphate sequestration
                 1389.                                             by nano-La(Ⅲ) (hydr)oxides modified wheat straw with excellent
            [61]  HUANG W Y, ZHU Y, TANG J P, et al. Lanthanum-doped ordered   properties in regeneration[J]. Chemical Engineering Journal, 2017,
                 mesoporous hollow silica spheres  as  novel  adsorbents for  efficient   315: 345-354.
                 phosphate removal[J]. Journal of Materials Chemistry A, 2014, 2: 8839.   [80]  LIU J Y, WAN L H, ZHANG L, et al. Effect of pH, ionic strength,
            [62]  BRAUN K, POCHERT A, BECK M, et al. Dissolution kinetics of   and temperature on the phosphate adsorption onto lanthanum-doped
                 mesoporous silica nanoparticles in different simulated body fluids[J].   activated carbon fiber[J]. Journal of  Colloid and Interface Science,
                 Journal of Sol-Gel Science and Technology, 2016, 79: 319-327.   2011, 364: 490-496.
            [63]  AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly   [81]  ZHOU A J, ZHU C, CHEN W W, et al. Phosphorus recovery from
                 catalytically active Pt nanoparticles inside the pores of metal-organic   water by lanthanum hydroxide embedded interpenetrating network
                 framework: A double solvents approach[J]. Journal of the American   poly(vinyl alcohol)/sodium alginate hydrogel beads[J]. Colloids and
                 Chemical Society, 2012, 134: 13926-13929.         Surfaces A-physicochemical And Engineering Aspects, 2018, 554:
            [64]  HORCAJADA P, GREF  R,  BAATI T,  et al. Metal-organic   237-244.
                 frameworks in biomedicine[J].  Chemical  Reviews, 2012, 112:   [82]  ZHANG Y B (张允宝), LI Y B (李怡冰), LIU Z H (刘朝晖), et al.
                 1232-1268.                                        Adsorption characteristics of phosphate in residual dredging water by
            [65]  CHEN Y Z, XU Q,  YU S H,  et al. Tiny Pd@Co core-shell   zeolite modified with magnetic zirconium/iron[J]. China Water and
                 nanoparticles confined inside a metal-organic framework for highly   Wastewater (中国给水排水), 2020, 36(9): 69-74.
                 efficient catalysis[J]. Small, 2015, 11: 71-76.   [83]  HOU C Y (侯晨艳), ZHAO Y (赵英), CHI Y J (迟玉杰). Preparation
            [66]  PAN H Y, LI X H, ZHANG D M, et al. Pt nanoparticles entrapped in   of magnesium-load eggshell and its adsorption  properties for
                 mesoporous metal-organic frameworks MIL-101 as an efficient and   phosphate in water[J]. Fine Chemicals (精细化工), 2021, 38(10):
                 recyclable catalyst for the asymmetric hydrogenation of α-ketoesters[J].   2125-2132.
                 Journal of Molecular Catalysis A: Chemical, 2013, 37: 108-114.   [84]  HUANG W Y, LI  D, ZHU Y,  et al.  Fabrication of Fe-coordinated
   34   35   36   37   38   39   40   41   42   43   44