Page 19 - 《精细化工)》2023年第10期
P. 19

第 10 期                      史红玲,等:  二氧化碳还原用甲酸脱氢酶的研究进展                                   ·2097·


            [11]  OBERT R, DAVE B C. Enzymatic conversion of carbon dioxide to   cell-free conversion of CO 2 to chemicals by a multienzyme cascade
                 methanol: Enhanced methanol  production in silica sol-gel  matrices[J].   reaction[J]. ACS Catalysis, 2018, 8(12): 11085-11093.
                 Journal of the American Chemical Society, 1999, 121(51): 12192-   [31]  CHOE H, HA J M, JOO J C, et al. Structural insights into the efficient
                 12193.                                            CO 2-reducing activity of an NAD-dependent formate dehydrogenase
            [12]  YU X, NIKS D, MULCHANDANI A, et al. Efficient reduction of   from  Thiobacillus  sp. KNK65MA[J]. Acta Crystallographica,  2015,
                 CO 2 by the  molybdenum-containing formate dehydrogenase from   71(Part 2): 313-323.
                 Cupriavidus necator (Ralstonia eutropha)[J]. J Biol Chem, 2017,   [32]  TISHKOV V I, POPOV V O. Protein engineering  of formate
                 292(41): 16872-16879.                             dehydrogenase[J]. Biomol Eng, 2006, 23(2/3): 89-110.
            [13]  ZHANG Z  H (张振华), XIE Y L (解玉丽), WANG T J (王铁军),     [33]  ŸZGÜN G, KARAGÜLER N G, TURUNEN O, et al. Characterization
                                                                                  +
                 et al. Directed evolution for catalytic activity of formate dehydrogenase   of a new acidic  NAD -dependent formate dehydrogenase from
                 and its overexpression[J]. Chinese Journal of Applied Chemistry (应  thermophilic fungus  Chaetomium thermophilum[J]. Journal of
                 用化学), 2021, 38(6): 704-712.                       Molecular Catalysis B: Enzymatic, 2015, 122: 212-217.
            [14]  OTTO A, GRUBE T, SCHIEBAHN  S,  et al. Closing the loop:   [34]  NIKOLAOS  E, LABROU D J  R.  Active-site characterization of
                 Captured CO 2 as a feedstock in the chemical industry[J]. Energy &   Candida boidinii formate dehydrogenase[J].  Biochemical Journal,
                 Environmental Science, 2015, 8(11): 3283-3297.     2001, 354: 455-463.
            [15]  AMAO Y. Formate dehydrogenase for CO 2 utilization and its   [35]  SHI J  F, JIANG Y J, JIANG Z  Y,  et al. Enzymatic conversion  of
                 application[J]. Journal of CO 2 Utilization, 2018, 26: 623-641.     carbon dioxide[J]. Chem Soc Rev, 2015, 44(17): 5981-6000.
            [16]  CHOE H, JOO J C, CHO D H, et al. Efficient CO 2-reducing activity   [36]  CASTILLO R, OLIVA M, MARTI S, et al. A theoretical study of the
                 of NAD-dependent formate dehydrogenase from  Thiobacillus  sp.   catalytic mechanism of formate dehydrogenase[J].  Journal of  Physical
                 KNK65MA for formate production from  CO 2 gas[J]. PLoS One,   Chemistry B, 2008, 112(32): 10012-10022.
                 2014, 9(7): e103111.                          [37]  MOON M, PARK G W, LEE J P, et al. Recent progress in formate
            [17]  ASLAN A S, VALJAKKA J, RUUPUNEN J,  et al. Chaetomium   dehydrogenase (FDH) as a non-photosynthetic CO 2 utilizing enzyme:
                 thermophilum formate dehydrogenase has high activity in the   A short review[J]. Journal of CO 2 Utilization, 2020, 42: 101353.
                                      –
                 reduction of hydrogen carbonate (HCO 3) to formate[J]. Protein Engineering   [38]  MAIA L B, MOURA I, MOURA J J G. Molybdenum and tungsten-
                 Design & Selection, 2017, 30(1): 47-55.           containing formate dehydrogenases: Aiming to inspire a catalyst for
            [18] ALTAŞ N, ASLAN A S, KARATAŞ E, et al. Heterologous production   carbon dioxide utilization[J]. Inorganica Chimica  Acta,  2017, 455:
                                             +
                 of extreme  alkaline thermostable NAD -dependent formate   350-363.
                 dehydrogenase with wide-range pH  activity from  Myceliophthora   [39]  ROBINSON W E, BASSEGODA A, REISNER E, et al. Oxidation-
                 thermophila[J]. Process Biochemistry, 2017, 61: 110-118.     state-dependent binding properties of the active site in a mo-containing
            [19]  PALA  U,  YELMAZER B, CORBACIOGLU M,  et al. Functional   formate dehydrogenase[J]. Journal of the American  Chemical
                                             +
                 effects of active site mutations in NAD -dependent formate   Society, 2017, 139(29): 9927-9936.
                 dehydrogenases on transformation of hydrogen carbonate to formate[J].   [40]  WU  W, ZHU  D,  HUA  L. Site-saturation mutagenesis of formate
                                                                                                            +
                 Protein Eng Des Sel, 2018, 31(9): 327-335.        dehydrogenase from  Candida bodinii creating effective NADP -
            [20]  CAKAR M  M,  RUUPUNEN J, MANGAS-SANCHEZ J,  et al.   dependent FDH enzymes[J]. Journal of Molecular Catalysis B:
                 Engineered formate  dehydrogenase from Chaetomium thermophilum, a   Enzymatic, 2009, 61(3/4): 157-161.
                 promising enzymatic solution for biotechnical CO 2 fixation[J].   [41]  SCHUCHMANN K, MUELLER V. Direct and reversible hydrogenation
                 Biotechnol Lett, 2020, 42(11): 2251-2262.         of CO 2 to formate by a bacterial carbon dioxide reductase[J]. Science,
            [21]  ALISSANDRATOS A, KIM H K, MATTHEWS H, et al. Clostridium   2013, 342(6164): 1382-1385.
                 carboxidivorans strain P7T recombinant formate dehydrogenase   [42]  ALISSANDRATOS A, KIM H K, EASTON C J. Formate production
                 catalyzes reduction of CO 2 to formate[J].  Appl Environ  Microbiol,   through carbon dioxide hydrogenation with recombinant whole cell
                 2013, 79(2): 741-744.                             biocatalysts[J]. Bioresour Technol, 2014, 164: 7-11.
            [22]  MAIA L B, FONSECA  L,  MOURA I,  et al. Reduction  of carbon   [43]  SCHWARZ F M, MULLER V. Whole-cell biocatalysis for hydrogen
                 dioxide by  a  molybdenum-containing formate dehydrogenase: A   storage and syngas conversion to formate using a thermophilic
                 kinetic and mechanistic study[J]. J Am Chem Soc, 2016, 138(28):   acetogen[J]. Biotechnol Biofuels, 2020, 13: 32.
                 8834-8846.                                    [44]  SCHWARZ F M, SCHUCHMANN K, MUELLER V. Hydrogenation
            [23]  MOURATO C, MARTINS M, DA SILVA S M, et al. A continuous   of CO 2 at ambient pressure catalyzed by a highly active thermostable
                 system for biocatalytic hydrogenation of CO 2 to formate[J]. Bioresour   biocatalyst[J]. Biotechnology for Biofuels, 2018, 11: 237.
                 Technol, 2017, 235: 149-156.                  [45]  XU S W, LU Y, LI J, et al. Efficient conversion of CO 2 to methanol
                                                         +
            [24]  HARTMANN T, LEIMKUHLER  S. The  oxygen-tolerant and NAD -   catalyzed by three  dehydrogenases co-encapsulated in an alginate-
                 dependent formate  dehydrogenase  from Rhodobacter  capsulatus  is   silica (ALG-SiO 2) hybrid gel[J]. Industrial & Engineering Chemistry
                 able to catalyze the reduction of CO 2 to formate[J]. FEBS J, 2013,   Research, 2006, 45(13): 4567-4573.
                 280(23): 6083-6096.                           [46]  DIBENEDETTO  A, STUFANO P, MACYK W,  et al. Hybrid
            [25]  BASSEGODA A, MADDEN C, WAKERLEY D W,  et al. Reversible   technologies for an Enhanced carbon recycling based on the enzymatic
                 interconversion of  CO 2 and formate  by a  molybdenum-containing   reduction of CO 2 to methanol in water: Chemical and photochemical
                 formate dehydrogenase[J]. J Am Chem Soc, 2014, 136(44):   NADH regeneration[J]. Chemsuschem, 2012, 5(2): 373-378.
                 15473-15476.                                  [47]  ALISSANDRATOS A, EASTON C J. Biocatalysis for the application
            [26]  REDA T, PLUGGE C M, ABRAM N J, et al. Reversible interconversion   of CO 2 as a chemical feedstock[J].  Beilstein Journal of Organic
                 of carbon dioxide and formate by an electroactive  enzyme[J].   Chemistry, 2015, 11: 2370-2387.
                 Proceedings of the National Academy of Sciences of the United   [48]  SRIKANTH S, ALVAREZ-GALLEGO Y, VANBROEKHOVEN K,
                 States of America, 2008, 105(31): 10654-10658.     et al. Enzymatic  electrosynthesis of formic acid through carbon
            [27]  OLIVEIRA A  R, MOTA C,  MOURATO  C,  et al. Toward the   dioxide reduction in a bioelectrochemical system: Effect of
                 mechanistic understanding  of enzymatic CO 2 reduction[J].  ACS   immobilization and carbonic anhydrase addition[J]. Chemphyschem,
                 Catalysis, 2020, 10(6): 3844-3856.                2017, 18(22): 3174-3181.
            [28]  CAKAR M M, MANGAS-SANCHEZ J, BIRMINGHAM W R, et al.   [49]  ZHANG  L, ONG  J, LIU J,  et al. Enzymatic  electrosynthesis of
                 Discovery of a  new  metal and  NAD(+)-dependent formate   formate from CO 2 reduction  in a  hybrid  biofuel cell system[J].
                 dehydrogenase from  Clostridium ljungdahlii[J]. Prep Biochem   Renewable Energy, 2017, 108: 581-588.
                 Biotechnol, 2018, 48(4): 327-334.             [50]  LUO J, MEYER  A S, MATEIU R  V,  et al. Cascade  catalysis in
            [29]  KUK  S K, GOPINATH K,  SINGH R K,  et al. NADH-free   membranes with enzyme immobilization for multi-enzymatic
                 electroenzymatic reduction of CO 2 by conductive hydrogel-conjugated   conversion of CO 2 to methanol[J]. New Biotechnology, 2015, 32(3):
                 formate dehydrogenase[J]. ACS Catalysis, 2019, 9(6): 5584-5589.     319-327.
            [30]  SINGH R K, SINGH R, SIVAKUMAR D,  et al. Insights into                     (下转第 2206 页)
   14   15   16   17   18   19   20   21   22   23   24