Page 19 - 《精细化工)》2023年第10期
P. 19
第 10 期 史红玲,等: 二氧化碳还原用甲酸脱氢酶的研究进展 ·2097·
[11] OBERT R, DAVE B C. Enzymatic conversion of carbon dioxide to cell-free conversion of CO 2 to chemicals by a multienzyme cascade
methanol: Enhanced methanol production in silica sol-gel matrices[J]. reaction[J]. ACS Catalysis, 2018, 8(12): 11085-11093.
Journal of the American Chemical Society, 1999, 121(51): 12192- [31] CHOE H, HA J M, JOO J C, et al. Structural insights into the efficient
12193. CO 2-reducing activity of an NAD-dependent formate dehydrogenase
[12] YU X, NIKS D, MULCHANDANI A, et al. Efficient reduction of from Thiobacillus sp. KNK65MA[J]. Acta Crystallographica, 2015,
CO 2 by the molybdenum-containing formate dehydrogenase from 71(Part 2): 313-323.
Cupriavidus necator (Ralstonia eutropha)[J]. J Biol Chem, 2017, [32] TISHKOV V I, POPOV V O. Protein engineering of formate
292(41): 16872-16879. dehydrogenase[J]. Biomol Eng, 2006, 23(2/3): 89-110.
[13] ZHANG Z H (张振华), XIE Y L (解玉丽), WANG T J (王铁军), [33] ŸZGÜN G, KARAGÜLER N G, TURUNEN O, et al. Characterization
+
et al. Directed evolution for catalytic activity of formate dehydrogenase of a new acidic NAD -dependent formate dehydrogenase from
and its overexpression[J]. Chinese Journal of Applied Chemistry (应 thermophilic fungus Chaetomium thermophilum[J]. Journal of
用化学), 2021, 38(6): 704-712. Molecular Catalysis B: Enzymatic, 2015, 122: 212-217.
[14] OTTO A, GRUBE T, SCHIEBAHN S, et al. Closing the loop: [34] NIKOLAOS E, LABROU D J R. Active-site characterization of
Captured CO 2 as a feedstock in the chemical industry[J]. Energy & Candida boidinii formate dehydrogenase[J]. Biochemical Journal,
Environmental Science, 2015, 8(11): 3283-3297. 2001, 354: 455-463.
[15] AMAO Y. Formate dehydrogenase for CO 2 utilization and its [35] SHI J F, JIANG Y J, JIANG Z Y, et al. Enzymatic conversion of
application[J]. Journal of CO 2 Utilization, 2018, 26: 623-641. carbon dioxide[J]. Chem Soc Rev, 2015, 44(17): 5981-6000.
[16] CHOE H, JOO J C, CHO D H, et al. Efficient CO 2-reducing activity [36] CASTILLO R, OLIVA M, MARTI S, et al. A theoretical study of the
of NAD-dependent formate dehydrogenase from Thiobacillus sp. catalytic mechanism of formate dehydrogenase[J]. Journal of Physical
KNK65MA for formate production from CO 2 gas[J]. PLoS One, Chemistry B, 2008, 112(32): 10012-10022.
2014, 9(7): e103111. [37] MOON M, PARK G W, LEE J P, et al. Recent progress in formate
[17] ASLAN A S, VALJAKKA J, RUUPUNEN J, et al. Chaetomium dehydrogenase (FDH) as a non-photosynthetic CO 2 utilizing enzyme:
thermophilum formate dehydrogenase has high activity in the A short review[J]. Journal of CO 2 Utilization, 2020, 42: 101353.
–
reduction of hydrogen carbonate (HCO 3) to formate[J]. Protein Engineering [38] MAIA L B, MOURA I, MOURA J J G. Molybdenum and tungsten-
Design & Selection, 2017, 30(1): 47-55. containing formate dehydrogenases: Aiming to inspire a catalyst for
[18] ALTAŞ N, ASLAN A S, KARATAŞ E, et al. Heterologous production carbon dioxide utilization[J]. Inorganica Chimica Acta, 2017, 455:
+
of extreme alkaline thermostable NAD -dependent formate 350-363.
dehydrogenase with wide-range pH activity from Myceliophthora [39] ROBINSON W E, BASSEGODA A, REISNER E, et al. Oxidation-
thermophila[J]. Process Biochemistry, 2017, 61: 110-118. state-dependent binding properties of the active site in a mo-containing
[19] PALA U, YELMAZER B, CORBACIOGLU M, et al. Functional formate dehydrogenase[J]. Journal of the American Chemical
+
effects of active site mutations in NAD -dependent formate Society, 2017, 139(29): 9927-9936.
dehydrogenases on transformation of hydrogen carbonate to formate[J]. [40] WU W, ZHU D, HUA L. Site-saturation mutagenesis of formate
+
Protein Eng Des Sel, 2018, 31(9): 327-335. dehydrogenase from Candida bodinii creating effective NADP -
[20] CAKAR M M, RUUPUNEN J, MANGAS-SANCHEZ J, et al. dependent FDH enzymes[J]. Journal of Molecular Catalysis B:
Engineered formate dehydrogenase from Chaetomium thermophilum, a Enzymatic, 2009, 61(3/4): 157-161.
promising enzymatic solution for biotechnical CO 2 fixation[J]. [41] SCHUCHMANN K, MUELLER V. Direct and reversible hydrogenation
Biotechnol Lett, 2020, 42(11): 2251-2262. of CO 2 to formate by a bacterial carbon dioxide reductase[J]. Science,
[21] ALISSANDRATOS A, KIM H K, MATTHEWS H, et al. Clostridium 2013, 342(6164): 1382-1385.
carboxidivorans strain P7T recombinant formate dehydrogenase [42] ALISSANDRATOS A, KIM H K, EASTON C J. Formate production
catalyzes reduction of CO 2 to formate[J]. Appl Environ Microbiol, through carbon dioxide hydrogenation with recombinant whole cell
2013, 79(2): 741-744. biocatalysts[J]. Bioresour Technol, 2014, 164: 7-11.
[22] MAIA L B, FONSECA L, MOURA I, et al. Reduction of carbon [43] SCHWARZ F M, MULLER V. Whole-cell biocatalysis for hydrogen
dioxide by a molybdenum-containing formate dehydrogenase: A storage and syngas conversion to formate using a thermophilic
kinetic and mechanistic study[J]. J Am Chem Soc, 2016, 138(28): acetogen[J]. Biotechnol Biofuels, 2020, 13: 32.
8834-8846. [44] SCHWARZ F M, SCHUCHMANN K, MUELLER V. Hydrogenation
[23] MOURATO C, MARTINS M, DA SILVA S M, et al. A continuous of CO 2 at ambient pressure catalyzed by a highly active thermostable
system for biocatalytic hydrogenation of CO 2 to formate[J]. Bioresour biocatalyst[J]. Biotechnology for Biofuels, 2018, 11: 237.
Technol, 2017, 235: 149-156. [45] XU S W, LU Y, LI J, et al. Efficient conversion of CO 2 to methanol
+
[24] HARTMANN T, LEIMKUHLER S. The oxygen-tolerant and NAD - catalyzed by three dehydrogenases co-encapsulated in an alginate-
dependent formate dehydrogenase from Rhodobacter capsulatus is silica (ALG-SiO 2) hybrid gel[J]. Industrial & Engineering Chemistry
able to catalyze the reduction of CO 2 to formate[J]. FEBS J, 2013, Research, 2006, 45(13): 4567-4573.
280(23): 6083-6096. [46] DIBENEDETTO A, STUFANO P, MACYK W, et al. Hybrid
[25] BASSEGODA A, MADDEN C, WAKERLEY D W, et al. Reversible technologies for an Enhanced carbon recycling based on the enzymatic
interconversion of CO 2 and formate by a molybdenum-containing reduction of CO 2 to methanol in water: Chemical and photochemical
formate dehydrogenase[J]. J Am Chem Soc, 2014, 136(44): NADH regeneration[J]. Chemsuschem, 2012, 5(2): 373-378.
15473-15476. [47] ALISSANDRATOS A, EASTON C J. Biocatalysis for the application
[26] REDA T, PLUGGE C M, ABRAM N J, et al. Reversible interconversion of CO 2 as a chemical feedstock[J]. Beilstein Journal of Organic
of carbon dioxide and formate by an electroactive enzyme[J]. Chemistry, 2015, 11: 2370-2387.
Proceedings of the National Academy of Sciences of the United [48] SRIKANTH S, ALVAREZ-GALLEGO Y, VANBROEKHOVEN K,
States of America, 2008, 105(31): 10654-10658. et al. Enzymatic electrosynthesis of formic acid through carbon
[27] OLIVEIRA A R, MOTA C, MOURATO C, et al. Toward the dioxide reduction in a bioelectrochemical system: Effect of
mechanistic understanding of enzymatic CO 2 reduction[J]. ACS immobilization and carbonic anhydrase addition[J]. Chemphyschem,
Catalysis, 2020, 10(6): 3844-3856. 2017, 18(22): 3174-3181.
[28] CAKAR M M, MANGAS-SANCHEZ J, BIRMINGHAM W R, et al. [49] ZHANG L, ONG J, LIU J, et al. Enzymatic electrosynthesis of
Discovery of a new metal and NAD(+)-dependent formate formate from CO 2 reduction in a hybrid biofuel cell system[J].
dehydrogenase from Clostridium ljungdahlii[J]. Prep Biochem Renewable Energy, 2017, 108: 581-588.
Biotechnol, 2018, 48(4): 327-334. [50] LUO J, MEYER A S, MATEIU R V, et al. Cascade catalysis in
[29] KUK S K, GOPINATH K, SINGH R K, et al. NADH-free membranes with enzyme immobilization for multi-enzymatic
electroenzymatic reduction of CO 2 by conductive hydrogel-conjugated conversion of CO 2 to methanol[J]. New Biotechnology, 2015, 32(3):
formate dehydrogenase[J]. ACS Catalysis, 2019, 9(6): 5584-5589. 319-327.
[30] SINGH R K, SINGH R, SIVAKUMAR D, et al. Insights into (下转第 2206 页)