Page 29 - 《精细化工)》2023年第10期
P. 29

第 10 期                 宋宇淙,等:  保留取代基团的苯环选择加氢反应催化剂研究进展                                   ·2107·


            如图 5 所示。Ru 在碳纳米管(CNTs)表面分布,                        本。(2)对载体进行改性修饰,调节载体表面与活
            形成活性位中心。Ru 活性位吸附氢分子并解离为 H,                         性组分之间的相互作用,实现活性组分的高度分散
            同时和 p-PDA 上的苯环共轭,使不饱和的苯环大 π                        和有效活性位数量的增加。(3)通过原位技术加深
            键打开,形成活泼的吸附化合物,接着活性氢原子                             对苯环选择性加氢催化机理的研究,为新催化剂的
            与不饱和化合物 C==C 双键碳原子结合,生成加氢                          开发提供理论指导。(4)考虑以异丙醇等液态储氢
            产物 1,4-CHDA。加氢产物无共轭结构后,从活性                         介质替代氢气作为氢源,提出具有绿色和本质安全
            位中心离去,活性位中心重新吸附。                                   特征的催化反应路径,开发出更高效的催化体系。

                                                               参考文献:

                                                               [1]   MUSTAFA T, ALAATTIN U. Benzene and its health effects[J]. Taf
                                                                   Preventive Medicine Bullletin, 2008, 7(6): 541-546.
                                                               [2]   LI S F (李绍芬), LIU B  R (刘邦荣), GAO W X (高文新), et al.
                                                                   Kinetics of benzene gas-phase hydrogenation over industrial nickel
                                                                   catalysts[J]. Journal of Chemical Engineering, 1982, (4): 337-347.
                                                               [3]   JIANG W, CAO J P, ZHAO X Y, et al. Highly selective aromatic
                                                                   ring hydrogenation of lignin-derived compounds over macroporous
                                                                   Ru/Nb 2O 5  with the lost acidity at room temperature[J]. Fuel, 2020,
                                                                   282: 118869.
                                                               [4]   TRAN B L, FULTON J  L, LINEHAN J C,  et al. Rh(CAAC)-

               图 4  Ru-Rh/γ-Al 2 O 3 (LiOH)催化作用机理示意图  [21]         catalyzed  arene hydrogenation: Evidence for nanocatalysis and
             Fig. 4    Catalytic mechanism of Ru-Rh/γ-Al 2 O 3 (LiOH)  [21]   sterically controlled site-selective  hydrogenation[J]. ACS Catalysis,
                                                                   2018, 8(9): 8441-8449.
                                                               [5]   MAEGAWA T, AKASHI A, YAGUCHI K,  et al. Efficient  and
                                                                   practical arene hydrogenation by heterogeneous catalysts under mild
                                                                   conditions[J]. Chemistry, 2009, 15(28): 6953-6963.
                                                               [6]   LI Z, ASSARY R S, ATESIN A C, et al. Rapid ether and alcohol C—
                                                                   O bond hydrogenolysis catalyzed by tandem high-valent metal triflate +
                                                                   supported Pd catalysts[J]. Journal of the American Chemical Society,

                                                                   2014, 136(1): 104-107.
              图 5   p-PDA 加氢合成 1,4-CHDA 反应机理示意图       [149]    [7]   CAO J Y, HAN F G, WANG L G, et al. Ru/g-C 3N 4 as an efficient
            Fig. 5    Catalytic mechanism of hydrogenation of p-PDA to   catalyst for selective hydrogenation of aromatic diamines to alicyclic
                   1,4-CHDA [149]                                  diamines[J]. RSC Advances, 2020, 10(28): 16515-16525.
                                                               [8]   KIM Y J, LEE J H, WIDYAYA  V T, et al. Effect of alkali metal
                                                                   nitrates on the Ru/C-catalyzed ring hydrogenation of m-xylylenediamine
            9   结束语与展望                                             to 1,3-cyclohexanebis(methylamine)[J]. Bulletin of the Korean
                                                                   Chemical Society, 2014, 35(4): 1117-1120.
                                                               [9]   GUO Y  Q (郭迎秋). Study on synthesis of cycloaliphatic amides
                 保留取代基团的苯环选择性加氢属于原子经济
                                                                   from aromatic amides hydrogenation over supported Ru catalyst[D].
            反应,且是化学工业中极其重要的反应之一。本文                                 Tianjin: Hebei University of Technology (河北工业大学), 2007.
            介绍了包括芳香二胺、芳香酯、芳香族氨基甲酸酯、                            [10]  VEDAGE G A. Hydrogenation of meta-toluenediamine: US5973207[P].
                                                                   1999-10-26.
            聚苯乙烯、联苯和双酚 A 等不同取代基团芳环化合                           [11]  GRECO N P. Hydrogenation of phenyl primary amines to cyclohexyl
            物苯环加氢催化剂的研究状况,并对该反应研究机                                 amines: US3520928[P]. 1970-07-21.
            理进行了总结。上述反应制得的脂环基化合物赋予                             [12]  KIM H S, PARK  K Y, KWON  Y S,  et al. Method for preparing
                                                                   cycloaliphatic diamines from aromatic diamines: US6075167[P].
            其合成材料以特殊功能,并减小了含有苯环的苯基                                 2000-06-13.
            衍生物对人体健康的潜在危害。目前,高性能催化                             [13]  BURDENIUC J J,  VEDAGE G A,  COOK B H. Hydrogenation of
                                                                   single ring aromatic diamines: US6429339[P]. 2002-08-06.
            剂主要以 Rh、Ru、Pd 和 Pt 等贵金属为主,Ni 等非
                                                               [14]  OSSWALD F, BRAUCH  K H,  BOTTCHER A,  et al. Method for
            贵金属催化剂的活性和选择性有待进一步提高。因                                 producing l,2-diamino-3-methylcyclohexane and/or l,2-diamino-4-
            此,高选择性、高催化稳定性及低成本催化剂的开                                 methylcyclohexane: US8134028[P]. 2009-10-08.
                                                               [15]  KIEL W, ZIRNGIEBL E, JENTSCH J D, et al. Ruthenium catalysts,
            发是该反应发展的关键。                                            their preparation and a process for preparing cycloaliphatic polyamines
                 在未来研究中,可从以下方面对上述反应进行                              using these catalysts: US5663443[P]. 1997-09-02.
                                                               [16]  WEISSEL O. Process for the hydrogenation of an aromatic amine
            探究:(1)应关注贵金属减量化或高性能非贵金属
                                                                   and the supported ruthenium catalyst used  in  the process: US
            催化剂的研制。比如:引入廉价助剂组分制备双金                                 4186145[P]. 1980-06-29.
            属催化剂。通过两金属间“协同效应”对贵金属活                             [17]  DARSOW G, PETRUCK G M. Process for preparing a mixture of amino-
                                                                   methyl-cyclohexanes and diamino-methyl-cyclohexanes: US5741929[P].
            性组分的颗粒尺寸、形貌及电子状态产生影响,进                                 1998-04-21.
            而对其催化活性起到促进作用,同时降低催化剂成                             [18]  GRAY T J, MASSE N G, HAGSTROM R A. Raney nickel catalysis
   24   25   26   27   28   29   30   31   32   33   34