Page 80 - 《精细化工)》2023年第10期
P. 80

·2158·                            精细化工   FINE CHEMICALS                                 第 40 卷

            性研究工作的开展,着力缩小基础研究与工业应用                                 Reports (材料导报), 2022, 36(8): 42-49.
                                                               [12]  LI Y (李酽), SONG S (宋双), SHAN  L X (单林曦),  et al.
            之间的差距。基于此,对 ZnS/ZnO 异质结光催化剂                            Sonochemical preparation and  photocatalytic properties of
            未来的发展方向提出了展望:                                          Au-modified nano ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8):
                                                                   1597-1603.
                (1)光催化作用机理仍需进一步明确,如通过                          [13]  TIE W W (铁伟伟), DU Z Y (杜兆禹), GAO Y H (高远浩), et al.
            相同方法制备的 ZnS/ZnO 异质结光催化剂在不同领                            In-situ reaction fabrication of ZnS/reduced graphene oxide composite
                                                                   and its photocatalytic property[J]. Acta Materiae Compositae Sinica
            域应用时会表现出完全不同的载流子转移模式,目                                 (复合材料学报), 2017, 34(5): 1082-1087.
            前也没有直接证据证明载流子的实际转移路径。因                             [14]  ZHOU J (周杰), GUAN G F (管国锋), ZHU B B (朱蓓蓓), et al.
                                                                   Preparation, characterization and  photocatalytic activities  of
            此,有必要结合先进的表征技术、原位检测技术和                                 g-C 3N 4/ZnO composites[J]. Fine Chemicals (精细化工), 2018, 35(2):
            密度泛函理论计算,阐明 ZnS/ZnO 异质结光催化剂                            228-232.
                                                               [15]  ZHANG L P, JARONIEC  M.  Toward designing semiconductor-
            界面载流子的转移和分离演化过程,为异质结光催                                 semiconductor heterojunctions for photocatalytic applications[J].
            化剂的设计和应用提供重要的依据;                                       Applied Surface Science, 2018, 430: 2-17.
                                                               [16]  DI-LIBERTO G, CIPRIANO L A, TOSONI S, et al. Rational design
                (2)S 型异质结作为一种新兴而高效的载流子                             of semiconductor heterojunctions for photocatalysis[J]. Chemistry-A
            转移模式,弥补了传统异质结的缺点。在今后的工                                 European Journal, 2021, 21(53): 13306-13317.
                                                               [17]  LIU Z, YU Y T, ZHU X M, et al. Semiconductor heterojunctions for
            作中有必要对 S 型 ZnS/ZnO 异质结的设计、构建及                          photocatalytic hydrogen production  and Cr( Ⅵ ) reduction: A
            其在光催化领域的应用进行更加深入的研究;                                   review[J]. Materials Research Bulletin, 2022, 147: 111636.
                                                               [18]  ZHU B Y, ZHANG Q, LI X Y, et al. Facile synthesis of ZnS/ZnO
                (3)虽然 ZnS/ZnO 异质结光催化剂在能源和环                         nanosheets with enhanced photocatalytic activity[J]. Physica Status
                                                                   Solidi A-Applications and Materials Science, 2018, 215(23):
            境催化领域中得到了广泛且深入的研究,但是想要
                                                                   1800359.
            实现工业化的大规模应用还有一定的距离。因此,                             [19]  JIN X K, CHEN  J J, CHEN F J,  et al. Solid-state synthesis of
                                                                   ZnO/ZnS photocatalyst with efficient  organic pollutant degradation
            研究者应结合实验研究和理论模拟,构建高活性、                                 performance[J]. Catalysts, 2022, 12(9): 981.
            高稳定性且可见光响应的 ZnS/ZnO 异质结光催化                         [20]  SCHRIER J, DEMCHENKO D O, WANG L W. Optical properties of
                                                                   ZnO/ZnS and  ZnO/ZnTe heterostructures for photovoltaic
            剂,进而开发可行的大批量制备方法。                                      applications[J]. Nano Letters, 2007, 7(8): 2377-2382.
                                                               [21]  REN H J, YE K, CHEN H Y, et al. ZnO@ZnS core-shell nanorods
            参考文献:                                                  with homologous heterogeneous interface to enhance photocatalytic
                                                                   hydrogen production[J].  Colloids  and Surfaces A-Physicochemical
            [1]   LOW J X, JIANG C, CHENG B, et al. A review of direct Z-scheme   and Engineering Aspects, 2022, 652: 129844.
                 photocatalysts[J]. Small Methods, 2017, 1(5): 1700080.       [22]  YANG X Y,  LIU  H X, LI  T D,  et al. Preparation of  flower-like
            [2]   ZHANG Q Q (张琴琴), LI Z X (李再兴), CHEN  X F (陈晓飞),   ZnO@ZnS core-shell structure enhances photocatalytic  hydrogen
                 et al. Status quo and progress  of  perovskite-type photocatalysts[J].   production[J]. International Journal  of Hydrogen Energy, 2020,
                 Fine Chemicals (精细化工), 2022, 39(12): 2398-2408.     45(51): 26967-26978.
            [3]   HUSSAIN M Z, YANG Z X, HUANG Z, et al. Recent advances in   [23]  HASIJIA V, KUMAR A, SUDHAIK A,  et al. Step-scheme
                 metal-organic frameworks derived nanocomposites for photocatalytic   heterojunction photocatalysts for solar energy, water splitting, CO 2
                 applications in energy and environment[J]. Advanced Science, 2021,   conversion and bacterial inactivation: A review[J].  Environmental
                 8(14): 2100625.                                   Chemistry Letters, 2021, 19(4): 2941-2966.
            [4]   ZHOU P, LUO  M C, GUO S J.  Optimizing the semiconductor-   [24]  LIAO G F, LI C X, LIU S Y,  et al.  Z-scheme systems: From
                 metal-single-atom interaction for photocatalytic reactivity[J]. Nature   fundamental principles to characterization, synthesis, and
                 Reviews Chemistry, 2022, 6(11): 823-838.          photocatalytic fuel-conversion applications[J]. Physics Reports-
            [5]   LIU D, CHEN S T, LI R J, et al. Review of Z-scheme heterojunctions   Review Section of Physics Letters, 2022, 983: 1-41.
                 for  photocatalytic energy conversion[J].  Aata Physico-Chimica   [25]  HU X, GUO R T, CHEN X, et al. Bismuth-based Z-scheme structure
                 Sinica, 2022, 37(6): 2010017.                     for photocatalytic  CO 2 reduction: A review[J]. Journal of
            [6]   JI B, ZHANG J X, ZHANG C, et al. Vertically-aligned ZnO@ZnS   Environmental Chemical Engineering, 2022, 10(6): 108582.
                 nanorod chip with improved photocatalytic activity for  antibiotics   [26]  SCHUMACHER  L, MARSCHALL R. Recent advances in
                 degradation[J]. ACS Applied Nano Materials, 2022, 1(2): 793-799.     semiconductor heterojunctions and  Z-schemes for photocatalytic
            [7]   LI Z P, ZHOU L G, LU L Y, et al. Enhanced photocatalytic properties   hydrogen generation[J]. Topics in Current Chemistry, 2022, 380(6): 53.
                 of ZnO/Al 2O 3 nanorod heterostructure[J].  Materials  Research   [27]  BARD A J. Photoelectrochemistry and heterogeneous photocatalysis
                 Express, 2021, 8(4): 045505.                      at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75.
            [8]   WU F L (吴方棣), HU J P (胡家朋),  YANG Z T (杨自涛),  et al.   [28]  NG B J, PUTRI L K, KONG X  Y,  et al.  Z-scheme photocatalytic
                 First-principles study on photocatalytic properties of Ag-O-N   systems for solar water splitting[J]. Advanced Science, 2020, 7(7):
                 co-doped zinc blende ZnS[J]. Materials Reports (材料导报), 2021,   1903171.
                 35(18): 18012-18017.                          [29]  HUANG  D L, CHEN S, ZENG  G  M,  et al. Artificial  Z-scheme
            [9]   MOHAMED R M, ISMMAIL A A, KADI M W, et al. Photocatalytic   photocatalytic system: What have been done and where to go?[J].
                 performance mesoporous  Nd 2O 3 modified ZnO nanoparticles with   Reviews Chemistry Coordination, 2019, 385: 44-80.
                 enhanced degradation  of tetracycline[J]. Catalysis Today, 2021,   [30]  TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme
                 380(S1): 259-267.                                 in CdS-Au-TiO 2 three-component nanojunction system[J]. Nature
            [10]  ANKU W W, OPPONG S O B, SHUKLA S K, et al. Influence of   Materials, 2006, 5(10): 782-786.
                 ZnO concentration on the optical and photocatalytic properties of   [31]  YU J G,  WANG  S, LOW J X,  et al. Enhanced photocatalytic
                 Ni-doped ZnS/ZnO nanocomposite[J]. Bulletin of Materials Science,   performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the
                 2017, 39(7): 1745-1752.                           decomposition of formaldehyde in air[J]. Physical Chemistry
            [11] MA  C  (马超),  YU F (余飞), SUN Y  F (孙翼飞),  et al. Synthesis,   Chemical Physics, 2013, 15(39): 16883-16890.
                 characterization and photocatalytic mechanism of Ag decorated Sm:   [32]  CHEN D D (陈丹丹), LI Y (李燕), WANG A G (王爱国). Progress
                 ZnO nanocomposite with high photocatalytic activity[J].  Materials   on fabrication of spinel ferrite heterojunction and its application in
   75   76   77   78   79   80   81   82   83   84   85