Page 80 - 《精细化工)》2023年第10期
P. 80
·2158· 精细化工 FINE CHEMICALS 第 40 卷
性研究工作的开展,着力缩小基础研究与工业应用 Reports (材料导报), 2022, 36(8): 42-49.
[12] LI Y (李酽), SONG S (宋双), SHAN L X (单林曦), et al.
之间的差距。基于此,对 ZnS/ZnO 异质结光催化剂 Sonochemical preparation and photocatalytic properties of
未来的发展方向提出了展望: Au-modified nano ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8):
1597-1603.
(1)光催化作用机理仍需进一步明确,如通过 [13] TIE W W (铁伟伟), DU Z Y (杜兆禹), GAO Y H (高远浩), et al.
相同方法制备的 ZnS/ZnO 异质结光催化剂在不同领 In-situ reaction fabrication of ZnS/reduced graphene oxide composite
and its photocatalytic property[J]. Acta Materiae Compositae Sinica
域应用时会表现出完全不同的载流子转移模式,目 (复合材料学报), 2017, 34(5): 1082-1087.
前也没有直接证据证明载流子的实际转移路径。因 [14] ZHOU J (周杰), GUAN G F (管国锋), ZHU B B (朱蓓蓓), et al.
Preparation, characterization and photocatalytic activities of
此,有必要结合先进的表征技术、原位检测技术和 g-C 3N 4/ZnO composites[J]. Fine Chemicals (精细化工), 2018, 35(2):
密度泛函理论计算,阐明 ZnS/ZnO 异质结光催化剂 228-232.
[15] ZHANG L P, JARONIEC M. Toward designing semiconductor-
界面载流子的转移和分离演化过程,为异质结光催 semiconductor heterojunctions for photocatalytic applications[J].
化剂的设计和应用提供重要的依据; Applied Surface Science, 2018, 430: 2-17.
[16] DI-LIBERTO G, CIPRIANO L A, TOSONI S, et al. Rational design
(2)S 型异质结作为一种新兴而高效的载流子 of semiconductor heterojunctions for photocatalysis[J]. Chemistry-A
转移模式,弥补了传统异质结的缺点。在今后的工 European Journal, 2021, 21(53): 13306-13317.
[17] LIU Z, YU Y T, ZHU X M, et al. Semiconductor heterojunctions for
作中有必要对 S 型 ZnS/ZnO 异质结的设计、构建及 photocatalytic hydrogen production and Cr( Ⅵ ) reduction: A
其在光催化领域的应用进行更加深入的研究; review[J]. Materials Research Bulletin, 2022, 147: 111636.
[18] ZHU B Y, ZHANG Q, LI X Y, et al. Facile synthesis of ZnS/ZnO
(3)虽然 ZnS/ZnO 异质结光催化剂在能源和环 nanosheets with enhanced photocatalytic activity[J]. Physica Status
Solidi A-Applications and Materials Science, 2018, 215(23):
境催化领域中得到了广泛且深入的研究,但是想要
1800359.
实现工业化的大规模应用还有一定的距离。因此, [19] JIN X K, CHEN J J, CHEN F J, et al. Solid-state synthesis of
ZnO/ZnS photocatalyst with efficient organic pollutant degradation
研究者应结合实验研究和理论模拟,构建高活性、 performance[J]. Catalysts, 2022, 12(9): 981.
高稳定性且可见光响应的 ZnS/ZnO 异质结光催化 [20] SCHRIER J, DEMCHENKO D O, WANG L W. Optical properties of
ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic
剂,进而开发可行的大批量制备方法。 applications[J]. Nano Letters, 2007, 7(8): 2377-2382.
[21] REN H J, YE K, CHEN H Y, et al. ZnO@ZnS core-shell nanorods
参考文献: with homologous heterogeneous interface to enhance photocatalytic
hydrogen production[J]. Colloids and Surfaces A-Physicochemical
[1] LOW J X, JIANG C, CHENG B, et al. A review of direct Z-scheme and Engineering Aspects, 2022, 652: 129844.
photocatalysts[J]. Small Methods, 2017, 1(5): 1700080. [22] YANG X Y, LIU H X, LI T D, et al. Preparation of flower-like
[2] ZHANG Q Q (张琴琴), LI Z X (李再兴), CHEN X F (陈晓飞), ZnO@ZnS core-shell structure enhances photocatalytic hydrogen
et al. Status quo and progress of perovskite-type photocatalysts[J]. production[J]. International Journal of Hydrogen Energy, 2020,
Fine Chemicals (精细化工), 2022, 39(12): 2398-2408. 45(51): 26967-26978.
[3] HUSSAIN M Z, YANG Z X, HUANG Z, et al. Recent advances in [23] HASIJIA V, KUMAR A, SUDHAIK A, et al. Step-scheme
metal-organic frameworks derived nanocomposites for photocatalytic heterojunction photocatalysts for solar energy, water splitting, CO 2
applications in energy and environment[J]. Advanced Science, 2021, conversion and bacterial inactivation: A review[J]. Environmental
8(14): 2100625. Chemistry Letters, 2021, 19(4): 2941-2966.
[4] ZHOU P, LUO M C, GUO S J. Optimizing the semiconductor- [24] LIAO G F, LI C X, LIU S Y, et al. Z-scheme systems: From
metal-single-atom interaction for photocatalytic reactivity[J]. Nature fundamental principles to characterization, synthesis, and
Reviews Chemistry, 2022, 6(11): 823-838. photocatalytic fuel-conversion applications[J]. Physics Reports-
[5] LIU D, CHEN S T, LI R J, et al. Review of Z-scheme heterojunctions Review Section of Physics Letters, 2022, 983: 1-41.
for photocatalytic energy conversion[J]. Aata Physico-Chimica [25] HU X, GUO R T, CHEN X, et al. Bismuth-based Z-scheme structure
Sinica, 2022, 37(6): 2010017. for photocatalytic CO 2 reduction: A review[J]. Journal of
[6] JI B, ZHANG J X, ZHANG C, et al. Vertically-aligned ZnO@ZnS Environmental Chemical Engineering, 2022, 10(6): 108582.
nanorod chip with improved photocatalytic activity for antibiotics [26] SCHUMACHER L, MARSCHALL R. Recent advances in
degradation[J]. ACS Applied Nano Materials, 2022, 1(2): 793-799. semiconductor heterojunctions and Z-schemes for photocatalytic
[7] LI Z P, ZHOU L G, LU L Y, et al. Enhanced photocatalytic properties hydrogen generation[J]. Topics in Current Chemistry, 2022, 380(6): 53.
of ZnO/Al 2O 3 nanorod heterostructure[J]. Materials Research [27] BARD A J. Photoelectrochemistry and heterogeneous photocatalysis
Express, 2021, 8(4): 045505. at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75.
[8] WU F L (吴方棣), HU J P (胡家朋), YANG Z T (杨自涛), et al. [28] NG B J, PUTRI L K, KONG X Y, et al. Z-scheme photocatalytic
First-principles study on photocatalytic properties of Ag-O-N systems for solar water splitting[J]. Advanced Science, 2020, 7(7):
co-doped zinc blende ZnS[J]. Materials Reports (材料导报), 2021, 1903171.
35(18): 18012-18017. [29] HUANG D L, CHEN S, ZENG G M, et al. Artificial Z-scheme
[9] MOHAMED R M, ISMMAIL A A, KADI M W, et al. Photocatalytic photocatalytic system: What have been done and where to go?[J].
performance mesoporous Nd 2O 3 modified ZnO nanoparticles with Reviews Chemistry Coordination, 2019, 385: 44-80.
enhanced degradation of tetracycline[J]. Catalysis Today, 2021, [30] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme
380(S1): 259-267. in CdS-Au-TiO 2 three-component nanojunction system[J]. Nature
[10] ANKU W W, OPPONG S O B, SHUKLA S K, et al. Influence of Materials, 2006, 5(10): 782-786.
ZnO concentration on the optical and photocatalytic properties of [31] YU J G, WANG S, LOW J X, et al. Enhanced photocatalytic
Ni-doped ZnS/ZnO nanocomposite[J]. Bulletin of Materials Science, performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the
2017, 39(7): 1745-1752. decomposition of formaldehyde in air[J]. Physical Chemistry
[11] MA C (马超), YU F (余飞), SUN Y F (孙翼飞), et al. Synthesis, Chemical Physics, 2013, 15(39): 16883-16890.
characterization and photocatalytic mechanism of Ag decorated Sm: [32] CHEN D D (陈丹丹), LI Y (李燕), WANG A G (王爱国). Progress
ZnO nanocomposite with high photocatalytic activity[J]. Materials on fabrication of spinel ferrite heterojunction and its application in