Page 82 - 《精细化工)》2023年第10期
P. 82
·2160· 精细化工 FINE CHEMICALS 第 40 卷
2016, 42(5): 44-47. production[J]. ChemistrySelect, 2022, 7(8): 202103869.
[71] DENG C H, YE F, WANG T, et al. Developing hierarchical CdS/NiO [90] KUMBHAKAR P, BISWAS S, TIWARY C S, et al. Near white light
hollow heterogeneous architectures for boosting photocatalytic emission and enhanced photocatalytic activity by tweaking surface
hydrogen generation[J]. Nano Research, 2022, 15(3): 2003-2012. defects of coaxial ZnO@ZnS core-shell nanorods[J]. Journal of
[72] LIU C W (刘春闱), WAN Y (万阳), ZHUO S H (卓盛海), et al. Applied Physics, 2017, 121: 144301.
Growth mechanism and photocatalytic performance of ZnO nanorod [91] ZHI Y Q, YI Y, DENG C X, et al. Defect-enriched ZnO/ZnS
arrays[J]. Material Sciences (材料科学), 2018, 8(5): 482-489. heterostructures derived from hydrozincite intermediates for
[73] WANG T, JIN B J, JIAO Z B, et al. Electric field-directed growth hydrogen evolution under visible light[J]. ChemSusChem, 2022,
and photoelectrochemical properties of cross-linked Au-ZnO 15(18): 202200860.
hetero-nanowire arrays[J]. Chemical Communications, 2015, 51(11): [92] TANG Y Y, LI L B, WANG C, et al. Application and research
2103-2106. progress of rare earth modified ZnO[J]. Journal of the Chinese
[74] LI X B (李小保), ZHOU X L (周小龙), MENG E J (孟尔佳). Society of Rare Earths, 2021, 39(5): 698-710.
Preparation, characterization and photocatalysis performance of ZnO [93] WANG W M, LEE G J, WANG P, et al. Microwave synthesis of
nano-sheets/regenerated cellulose thin films[J]. Guangdong Chemical metal-doped ZnS photocatalysts and applications on degrading
Industry (广东化工), 2019, 46(19): 3-5. 4-chlorophenol using heterogeneous photocatalytic ozonation process[J].
[75] HAN Q T, BAI X W, MAN Z Q, et al. Convincing synthesis of Separation and Purification Technology, 2020, 237: 116469.
atomically thin, single-crystalline InVO 4 sheets toward promoting [94] SANAKOUSAR F M, VIDYASAGAR C C, JIMENEZ-PEREZ V
highly selective and efficient solar conversion of CO 2 into CO[J]. M, et al. Recent progress on visible-light-driven metal and non-metal
Journal of the American Chemical Society, 2019, 141(10): doped ZnO nanostructures for photocatalytic degradation of organic
4209-4213. pollutants[J]. Materials Science in Semiconductor Processing, 2022,
[76] BAO E P (鲍二蓬), ZHANG S Q (张硕卿), ZOU J J (邹吉军), et al. 140: 106390.
Research progress on special-morphology photocatalysts[J]. [95] CHANG C J, HUANG K L, CHEN J K, et al. Improved
Chemical Industry and Engineering (化学工业与工程), 2021, 38(2): photocatalytic hydrogen production of ZnO/ZnS based photocatalysts
19-29. by Ce doping[J]. Journal of the Taiwan Institute of Chemical
[77] RANJITH K S, CASTILLO R B, SILLANPAA M, et al. Effective Engineers, 2015, 55: 82-89.
shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod [96] CHEN Z Y (陈震宇), GUO L J (郭烈锦). Study on the performance
arrays on visible photocatalytic and photo sensing properties[J]. of photocatalytic hydrogen production by splitting water over Ni
Applied Catalysis B: Environmental, 2018, 237: 128-139. loaded ZnS-ZnO catalysts[J]. Acta Energiae Solaris Sinica (太阳能
[78] MA D M, LIU W Y, CHEN Q, et al. Titanium-oxo-clusters 学报), 2007, 28(3): 314-319.
precursors for preparation of In 2S 3/TiO 2 heterostructure and its [97] JING D W, LI R, LIU M C, et al. Copper-doped ZnO/ZnS core/shell
photocatalytic degradation of tetracycline in water[J]. Journal of nanotube as a novel photocatalyst system for photocatalytic hydrogen
Solid State Chemistry, 2021, 293: 121791. production under visible light[J]. International Journal of
[79] PAN J W, GUAN Z J, YANG J J, et al. Facile fabrication of Nanotechnology, 2011, 8(6/7): 446-457.
ZnIn 2S 4/SnS 2 3D heterostructure for efficient visible-light [98] ZENG W, REN Y F, ZHENG Y Y, et al. In-situ copper doping with
photocatalytic reduction of Cr(Ⅵ)[J]. Chinese Journal of Catalysis, ZnO/ZnS heterostructures to promote interfacial photocatalysis of
2020, 41(1): 200-208. microsized particles[J]. ChemCatChem, 2021, 13(2): 564-573.
[80] WU D P, JIANG Y, YUAN Y F, et al. ZnO-ZnS heterostructures with [99] GAHLAUT U P S, KUMAR V, GOSWAMI Y C. Enhanced
enhanced optical and photocatalytic properties[J]. Journal of photocatalytic activity of low cost synthesized Al doped amorphous
Nanoparticle Research, 2011, 13(7): 2875-2886. ZnO/ZnS heterostructures[J]. Physica E, 2020, 117: 113792.
[81] SANG H X, WANG X T, FAN C C, et al. Enhanced photocatalytic [100] MA H C, CHENG X H, MA C, et al. Synthesis, characterization, and
H 2 production from glycerol solution over ZnO/ZnS core/shell photocatalytic activity of N-doped ZnO/ZnS composites[J].
nanorods prepared by a low temperature route[J]. International International Journal of Photoenergy, 2013, 2013: 625024.
Journal of Hydrogen Energy, 2012, 37: 1348-1355. [101] KHAN S, MINYEONG J, TON N N T, et al. C-doped ZnS-ZnO/Rh
[82] PINA-PEREZ Y, AGUILAR-MATINEZ O, ACEVEDO-PENA P, et nanosheets as multijunctioned photocatalysts for effective H 2
al. Novel ZnS-ZnO composite synthesized by the solvothermal generation from pure water under solar simulating light[J]. Applied
method through the partial sulfidation of ZnO for H 2 production Catalysis B: Environmental, 2021, 297: 120473.
without sacrifificial agent[J]. Applied Catalysis B: Environmental, [102] YU F C, ZHOU Y D, CUI J P, et al. Switching between Z-scheme
2018, 230: 125-134. and type-Ⅱ charge separation mechanisms in ZnO/ZnS composite
[83] WANG Z, CAO S W, LOO S C J, et al. Nanoparticle heterojunctions photocatalyst by La doping[J]. Journal of Materials Science, 2022,
in ZnS/ZnO hybrid nanowires for visible-light-driven photocatalytic 57(2): 983-1005.
hydrogen generation[J]. CrystEngComm, 2013, 15(28): 5688-5693. [103] GAO X C (高鑫椿), LI J X (李佳昕), SONG M Y (宋沐遥), et al.
[84] HU Y, QIAN H H, LIU Y, et al. A microwave-assisted rapid route to New progress on modification of ZnO and its application in energy
synthesize ZnO/ZnS core-shell nanostructures via controllable catalysis[J]. New Chemical Materials (化工新型材料), 2022, 50(9):
surface sulfidation of ZnO nanorods[J]. CrystEngComm, 2011, 65-69.
13(10): 3438-3443. [104] NGUYEN T H, THU-DO T O, GIANG H T, et al. Effect of
[85] SADOLLAHKHANI A, NUR O, WILLANDER M, et al. A detailed metal-support couplings on the photocatalytic performance of
optical investigation of ZnO@ZnS core-shell nanoparticles and their Au-decorated ZnO nanorods[J]. Journal of Materials Science:
photocatalytic activity at different pH values[J]. Ceramics Materials in Electronics, 2020, 31(17): 14946-14952.
International, 2015, 41: 7174-7184. [105] WANG X W, CAO Z Q, ZHANG Y, et al. All-solid-state Z-scheme
[86] CHANG Y C. Complex ZnO/ZnS nanocable and nanotube arrays Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous
with high performance photocatalytic activity[J]. Journal of Alloys evolution of H 2 and O 2[J]. Chemical Engineering Journal, 2020, 385:
and Compounds, 2016, 664: 538-546. 123782.
[87] LIANG Y C, LO Y R, WANG C C, et al. Shell layer thickness- [106] MA D D, SHI J W, SUN D K, et al. Au decorated hollow ZnO@ZnS
dependent photocatalytic activity of sputtering synthesized heterostructure for enhanced photocatalytic hydrogen evolution: The
hexagonally structured ZnO-ZnS composite nanorods[J]. Materials, insight into the roles of hollow channel and Au nanoparticles[J].
2018, 11(1): 87. Applied Catalysis B: Environmental, 2019, 244: 748-757.
[88] CHEN W, RUAN H, HU Y, et al. One-step preparation of hollow [107] YAO Y F, ZHANG Y C, SHEN M, et al. The facile synthesis and
ZnO core/ZnS shell structures with enhanced photocatalytic enhanced photocatalytic properties of ZnO@ZnS modifified with
0
properties[J]. CrystEngComm, 2012, 14(19): 6295-6305. Ag via in-situ ion exchange[J]. Colloids and Surfaces A, 2020, 591:
[89] WU B, WANG Y, ZENG W, et al. Modulation of surface oxygen 124556.
defects on ZnO/ZnS catalysts to promote photocatalytic H 2 (下转第 2221 页)