Page 82 - 《精细化工)》2023年第10期
P. 82

·2160·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 2016, 42(5): 44-47.                               production[J]. ChemistrySelect, 2022, 7(8): 202103869.
            [71]  DENG C H, YE F, WANG T, et al. Developing hierarchical CdS/NiO   [90]  KUMBHAKAR P, BISWAS S, TIWARY C S, et al. Near white light
                 hollow heterogeneous architectures for boosting photocatalytic   emission and enhanced photocatalytic activity by tweaking surface
                 hydrogen generation[J]. Nano Research, 2022, 15(3): 2003-2012.     defects of coaxial ZnO@ZnS core-shell nanorods[J]. Journal of
            [72]  LIU C  W (刘春闱),  WAN Y (万阳),  ZHUO S H (卓盛海),  et al.   Applied Physics, 2017, 121: 144301.
                 Growth mechanism and photocatalytic performance of ZnO nanorod   [91]  ZHI Y Q, YI  Y, DENG  C  X,  et al. Defect-enriched ZnO/ZnS
                 arrays[J]. Material Sciences (材料科学), 2018, 8(5): 482-489.     heterostructures derived from hydrozincite intermediates for
            [73]  WANG T, JIN B J, JIAO Z B, et al. Electric field-directed growth   hydrogen evolution under  visible light[J]. ChemSusChem, 2022,
                 and photoelectrochemical properties of cross-linked Au-ZnO   15(18): 202200860.
                 hetero-nanowire arrays[J]. Chemical Communications, 2015, 51(11):   [92]  TANG Y Y, LI  L B, WANG C,  et al. Application and research
                 2103-2106.                                        progress of rare earth modified ZnO[J]. Journal  of  the Chinese
            [74]  LI X B (李小保), ZHOU X  L (周小龙), MENG E J (孟尔佳).   Society of Rare Earths, 2021, 39(5): 698-710.
                 Preparation, characterization and photocatalysis performance of ZnO   [93]  WANG  W M,  LEE G J,  WANG P,  et al. Microwave synthesis of
                 nano-sheets/regenerated cellulose thin films[J]. Guangdong Chemical   metal-doped ZnS  photocatalysts and applications on degrading
                 Industry (广东化工), 2019, 46(19): 3-5.               4-chlorophenol using heterogeneous photocatalytic ozonation process[J].
            [75]  HAN Q T,  BAI X W, MAN  Z Q,  et al. Convincing synthesis of   Separation and Purification Technology, 2020, 237: 116469.
                 atomically thin, single-crystalline InVO 4 sheets toward promoting   [94]  SANAKOUSAR F M, VIDYASAGAR C  C, JIMENEZ-PEREZ V
                 highly selective and efficient  solar conversion of CO 2 into CO[J].   M, et al. Recent progress on visible-light-driven metal and non-metal
                 Journal  of  the  American Chemical Society, 2019, 141(10):   doped ZnO nanostructures for photocatalytic degradation of organic
                 4209-4213.                                        pollutants[J]. Materials Science in Semiconductor Processing, 2022,
            [76]  BAO E P (鲍二蓬), ZHANG S Q (张硕卿), ZOU J J (邹吉军), et al.   140: 106390.
                 Research progress on special-morphology photocatalysts[J].   [95]  CHANG C J, HUANG K  L,  CHEN J K,  et al. Improved
                 Chemical Industry and Engineering (化学工业与工程), 2021, 38(2):   photocatalytic hydrogen production of ZnO/ZnS based photocatalysts
                 19-29.                                            by Ce doping[J]. Journal of the Taiwan Institute of  Chemical
            [77]  RANJITH K S, CASTILLO R B, SILLANPAA M, et al. Effective   Engineers, 2015, 55: 82-89.
                 shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod   [96] CHEN Z Y (陈震宇), GUO L J (郭烈锦). Study on the performance
                 arrays on visible photocatalytic and photo sensing properties[J].   of photocatalytic hydrogen  production by splitting water over Ni
                 Applied Catalysis B: Environmental, 2018, 237: 128-139.     loaded ZnS-ZnO catalysts[J]. Acta Energiae Solaris Sinica (太阳能
            [78]  MA D M, LIU  W Y,  CHEN Q,  et al. Titanium-oxo-clusters   学报), 2007, 28(3): 314-319.
                 precursors for preparation of In 2S 3/TiO 2 heterostructure  and its   [97]  JING D W, LI R, LIU M C, et al. Copper-doped ZnO/ZnS core/shell
                 photocatalytic degradation of tetracycline in water[J]. Journal of   nanotube as a novel photocatalyst system for photocatalytic hydrogen
                 Solid State Chemistry, 2021, 293: 121791.         production under visible light[J]. International Journal of
            [79]  PAN J W, GUAN Z J,  YANG J J,  et al. Facile fabrication of   Nanotechnology, 2011, 8(6/7): 446-457.
                 ZnIn 2S 4/SnS 2  3D heterostructure for efficient  visible-light   [98]  ZENG W, REN Y F, ZHENG Y Y, et al. In-situ copper doping with
                 photocatalytic reduction of Cr(Ⅵ)[J]. Chinese Journal of Catalysis,   ZnO/ZnS heterostructures to promote interfacial photocatalysis of
                 2020, 41(1): 200-208.                             microsized particles[J]. ChemCatChem, 2021, 13(2): 564-573.
            [80]  WU D P, JIANG Y, YUAN Y F, et al. ZnO-ZnS heterostructures with   [99]  GAHLAUT U  P S,  KUMAR V, GOSWAMI  Y  C. Enhanced
                 enhanced optical and photocatalytic properties[J]. Journal of   photocatalytic activity of low cost synthesized Al doped amorphous
                 Nanoparticle Research, 2011, 13(7): 2875-2886.     ZnO/ZnS heterostructures[J]. Physica E, 2020, 117: 113792.
            [81]  SANG H X, WANG X T, FAN C C, et al. Enhanced photocatalytic   [100]  MA H C, CHENG X H, MA C, et al. Synthesis, characterization, and
                 H 2 production from glycerol solution over ZnO/ZnS  core/shell   photocatalytic activity of N-doped ZnO/ZnS composites[J].
                 nanorods prepared by a low temperature route[J]. International   International Journal of Photoenergy, 2013, 2013: 625024.
                 Journal of Hydrogen Energy, 2012, 37: 1348-1355.     [101] KHAN S, MINYEONG J, TON N N T, et al. C-doped ZnS-ZnO/Rh
            [82]  PINA-PEREZ Y, AGUILAR-MATINEZ O, ACEVEDO-PENA P, et   nanosheets as multijunctioned  photocatalysts for effective H 2
                 al. Novel ZnS-ZnO composite synthesized by the solvothermal   generation from pure water under solar simulating light[J]. Applied
                 method through  the partial sulfidation of ZnO for H 2 production   Catalysis B: Environmental, 2021, 297: 120473.
                 without sacrifificial agent[J]. Applied Catalysis B:  Environmental,   [102]  YU F C, ZHOU Y D, CUI J P, et al. Switching between Z-scheme
                 2018, 230: 125-134.                               and type-Ⅱ  charge separation mechanisms in ZnO/ZnS composite
            [83]  WANG Z, CAO S W, LOO S C J, et al. Nanoparticle heterojunctions   photocatalyst by La doping[J]. Journal of Materials Science, 2022,
                 in ZnS/ZnO hybrid nanowires for visible-light-driven photocatalytic   57(2): 983-1005.
                 hydrogen generation[J]. CrystEngComm, 2013, 15(28): 5688-5693.     [103] GAO X C (高鑫椿), LI J X (李佳昕), SONG M Y (宋沐遥), et al.
            [84]  HU Y, QIAN H H, LIU Y, et al. A microwave-assisted rapid route to   New progress on modification of ZnO and its application in energy
                 synthesize ZnO/ZnS core-shell  nanostructures  via controllable   catalysis[J]. New Chemical Materials (化工新型材料), 2022, 50(9):
                 surface sulfidation of ZnO nanorods[J]. CrystEngComm, 2011,   65-69.
                 13(10): 3438-3443.                            [104]  NGUYEN T H, THU-DO T O, GIANG H T,  et al. Effect of
            [85]  SADOLLAHKHANI A, NUR O, WILLANDER M, et al. A detailed   metal-support couplings on the  photocatalytic performance of
                 optical investigation of ZnO@ZnS core-shell nanoparticles and their   Au-decorated ZnO nanorods[J]. Journal of Materials Science:
                 photocatalytic activity at different pH values[J]. Ceramics   Materials in Electronics, 2020, 31(17): 14946-14952.
                 International, 2015, 41: 7174-7184.           [105] WANG X W, CAO Z Q, ZHANG Y, et al. All-solid-state Z-scheme
            [86]  CHANG Y C.  Complex ZnO/ZnS nanocable and  nanotube arrays   Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous
                 with high performance photocatalytic  activity[J]. Journal of Alloys   evolution of H 2 and O 2[J]. Chemical Engineering Journal, 2020, 385:
                 and Compounds, 2016, 664: 538-546.                123782.
            [87]  LIANG  Y  C, LO Y R, WANG  C C,  et al. Shell  layer thickness-   [106]  MA D D, SHI J W, SUN D K, et al. Au decorated hollow ZnO@ZnS
                 dependent  photocatalytic activity of sputtering synthesized   heterostructure for enhanced photocatalytic hydrogen evolution: The
                 hexagonally structured ZnO-ZnS composite nanorods[J]. Materials,   insight into the  roles of  hollow channel and  Au nanoparticles[J].
                 2018, 11(1): 87.                                  Applied Catalysis B: Environmental, 2019, 244: 748-757.
            [88]  CHEN W, RUAN  H, HU  Y,  et al. One-step  preparation of  hollow   [107]  YAO Y F, ZHANG Y C, SHEN M, et al. The facile synthesis and
                 ZnO core/ZnS shell structures with enhanced photocatalytic   enhanced photocatalytic properties of ZnO@ZnS modifified with
                                                                     0
                 properties[J]. CrystEngComm, 2012, 14(19): 6295-6305.     Ag  via in-situ ion exchange[J]. Colloids and Surfaces A, 2020, 591:
            [89]  WU  B, WANG  Y, ZENG W,  et al. Modulation of surface oxygen   124556.
                 defects on ZnO/ZnS catalysts to promote photocatalytic H 2                  (下转第 2221 页)
   77   78   79   80   81   82   83   84   85   86   87