Page 81 - 《精细化工)》2023年第10期
P. 81

第 10 期                     李   合,等: ZnS/ZnO 异质结光催化剂的应用研究进展                              ·2159·


                 photocatalytic degradation of organic pollutants[J]. Materials Reports   al. Porphyrins and phthalocyanines as biomimetic  tools for
                 (材料导报), 2023, 37(16): 39-48.                      photocatalytic H 2 production and CO 2 reduction[J]. Chemical Society
            [33]  ZHANG M F (张梦凡), ZHANG Z M (张振民), JIA J W (贾静雯),   Reviews, 2022, 51(16): 6965-7045.
                 et al. Research progress in the design, fabrication and application of   [53]  GE  W, LIU K, DENG S K,  et al.  Z-scheme g-C 3N 4/ZnO
                 Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals   heterojunction decorated  by  Au nanoparticles for enhanced
                 Science  and Engineering (有色金属科学与工程), 2020, 11(3),   photocatalytic hydrogen  production[J]. Applied  Surface Science,
                 18-32.                                            2022, 607: 155036.
            [34]  LI P, HE T. Common-cation based Z-scheme ZnS@ZnO core-shell   [54]  TAHIR M, TASLEEM S, TAHIR B.  Recent development in band
                 nanostructure for efficient solar-fuel production[J]. Applied Catalysis   engineering  of binary semiconductor materials for  solar driven
                 B-Environmental, 2018, 238: 518-524.              photocatalytic hydrogen production[J]. International Journal of
            [35]  POLIUKHOVA V, KHAN S, ZHU Q H, et al. ZnS/ZnO nanosheets   Hydrogen Energy, 2020, 45(32): 15985-16038.
                 obtained by thermal treatment of ZnS/ethylenediamine as a Z-scheme   [55]  HONG G, KIM J H. Oxide content optimized ZnS-ZnO
                 photocatalyst for H 2 generation and Cr(Ⅵ) reduction[J]. Applied   heterostructures  via facile thermal treatment process for enhanced
                 Surface Science, 2021, 575: 151773.               photocatalytic hydrogen production[J]. International Journal of
            [36]  YANG S Q (杨思琪), ZHENG Y J (郑永杰), ZHANG H R (张宏瑞),   Hydrogen Energy, 2014, 39(19): 9985-9993.
                 et al. Research progress  of g-C 3N 4-based heterojunctions in   [56]  BAO D, GAO P, ZHU X Y, et al. ZnO/ZnS heterostructured nanorod
                 photocatalytic applications[J]. Crystals Synthetic of Journal (人工晶  arrays and their  efficient  photocatalytic hydrogen evolution[J].
                 体学报), 2022, 51(6): 1110-1121.                     Chemistry-A European Journal, 2015, 21(36): 12728-12734.
            [37]  FU J W, XU Q  L, LOW J  X,  et al.  Ultrathin 2D/2D WO 3/g-C 3N 4   [57]  LUAN Q R, CHEN Q F, ZHENG J,  et al. Construction  of
                 step-scheme H 2-production photocatalyst[J]. Applied Catalysis   2D-ZnS@ZnO Z-scheme heterostructured nanosheets with a highly
                 B-Environmental, 2019, 243: 556-565.              ordered ZnO core and disordered ZnS shell for enhancing
            [38]  XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction   photocatalytic hydrogen evolution[J]. ChemNanoMat, 2020, 6(3):
                 photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.     470-479.
            [39]  ZHANG  L  Y,  ZHANG J J,  YU H  G,  et al. Emerging  S-scheme   [58]  JIANG J (蒋洁), WANG G H (王国宏). Preparation and hydrogen
                 photocatalyst[J]. Advanced Materials, 2022, 34(11): 2107668.     production performance  of  s-type ZnO/ZnS composites[J]. Yunnan
            [40]  JIANG J, WANG G H, SHAO Y C, et al. Step-scheme ZnO@ZnS   Chemical Technology (云南化工), 2020, 47(4): 60-61.
                 hollow microspheres for improved  photocatalytic H 2 production   [59]  WANG R Y (王若瑜), CHEN  Y Y (陈阳阳), TAN  J H  (谭集穗),
                 performance[J]. Chinese Journal of Catalysis, 2022, 43(2): 329-338.     et al. Research progress of  Z-scheme heterojunction  photocatalytic
            [41]  LI Y F, XIA Z L, YANG Q, et al. Review on g-C 3N 4-based S-scheme   system for CO 2 reduction[J]. Petroleum Processing and
                 heterojunction photocatalysts[J]. Journal of Materials Science &   Petrochemicals (石油炼制与化工), 2021, 52(10): 54-61.
                 Technology, 2022, 125: 128-144.               [60]  DEVI P, VERMA R, SINGH J P. Advancement in electrochemical,
            [42] WANG Y  C (王禹程), CAI T F (蔡天凤), ZHAO H (赵华), et al.   photocatalytic, and photoelectrochemical CO 2 reduction: Recent
                 Research progresses of  S-scheme  photocatalysts in hydrogen   progress in the role of oxygen vacancies in catalyst design[J]. Journal
                 production, CO 2 reduction and pollutant removal[J]. Petrochemical   of CO 2 Utilization, 2022, 65: 102211.
                 Technology (石油化工), 2022, 51(10): 1242-1248.     [61]  XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the
            [43]  ZHOU X B (周先波), CHEN J L (陈嘉磊), HU Y Y (胡亚一), et al.   application of metal-organic frameworks for photocatalytic reduction
                 Research progress on modification of nano-ZnO and its photocataytic   of CO 2[J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397.
                 degradation performance[J].  New Chemical Materials (化工新型材  [62]  LIU X J,  CHEN  T Q, XUE  Y  H,  et al. Nanoarchitectonics of
                 料), 2019, 47(4): 47-52.                           MXene/semiconductor heterojunctions toward artificial photosynthesis
            [44]  LI H (李慧), BI F (毕菲), LI Y C (李运成), et al. Research progress   via photocatalytic CO 2 reduction[J].  Coordination  Chemistry
                 of modified zinc oxide photocatalytic nanomaterials[J]. Technology   Reviews, 2022, 459: 214440.
                 & Development of Chemical Industry (化工技术与开发), 2022,   [63]  LIU Q Q (刘青青), ZHANG Q Y (张芩宇), HE J X (贺建雄), et al.
                 51(5): 51-54.                                     Preparation of organozirconium polymer aerogels and photocatalytic
            [45]  YANG L Q, ZHAO Z J, WANG H B, et al. Synthesis of ZnO/ZnS   reduction of CO 2[J]. Fine Chemicals (精细化工), 2021, 38(4):
                 core/shell microsphere and its photocatalytic activity for methylene   757-764.
                 blue and eosin dyes degradation[J]. Journal of Dispersion Science   [64]  XUE Z H, LUAN D Y, ZHANG H B, et al. Single-atom catalysts for
                 and Technology, 2019, 41(14): 2152-2158.          photocatalytic energy conversion[J]. Joule, 2022, 6(1): 92-133.
            [46]  CUI L (崔磊), DONG J (董晶),  YANG  L J (杨丽娟),  et al.   [65]  AKBARI M, SHARIFNIA S. Synthesis of ZnS/ZnO nanocomposite
                 Fabrication of ZnS/ZnO heterostructures and their photocatalytic   through  solution combustion method for  high rate photocatalytic
                 activity[J]. Fine Chemicals (精细化工), 2018, 35(4): 580-584.     conversion of CO 2 and CH 4[J]. Materials Letters, 2017, 194:
            [47]  MA Q, WANG  Z  S, JIA H X,  et al. ZnS-ZnO nanocomposites:   110-113.
                 Synthesis, characterization and enhanced photocatatlytic performance[J].   [66]  MOHAMED R  M, MKHALID I  A,  ALHADDAD M,  et al.
                 Journal of Materials Science: Materials in Electronics, 2016, 27(10):   Enhanced CO 2 photocatalytic  conversion into CH 3OH over
                 10282-10288.                                      visible-light driven Pt nanoparticle-decorated mesoporous ZnO-ZnS
            [48]  YU L H, CHEN W, LI D Z, et al. Inhibition of photocorrosion and   S-scheme heterostructures[J]. International Ceramics, 2021, 47(19):
                 photoactivity enhancement for ZnO  via specific hollow ZnO   26779-26788.
                 core/ZnS shell structure[J]. Applied Catalysis B-Environmental,   [67]  XU  L P, HU Y  L, PELLIGRA C,  et al.  ZnO with different
                 2015, 164: 453-461.                               morphologies synthesized by solvothermal  methods for enhanced
            [49]  MURILLO-SIERRA J C, HERNANDEZ-RAMIREZ A, ZHAO Z Y,   photocatalytic activity[J]. Chemistry of Materials, 2009, 21(13):
                 et al. Construction of direct  Z-scheme WO 3/ZnS heterojunction to   2875-2885.
                 enhance the photocatalytic degradation of tetracycline antibiotic[J].   [68]  MARFUR N A, JAAFAR N F, KHAIRUDDEAN M A, et al. Review
                 Journal of Environmental Chemical Engineering, 2021, 9(2): 105111.     on recent progression of modifications on titania morphology and its
            [50]  ZHANG Y M, YANG X  Y,  HE N,  et al. One-step hydrothermal   photocatalytic performance[J]. Acta Chimica Slovenica, 2020, 67(2):
                 fabrication of erythrocyte-like ZnS/ZnO composite with superior   361-374.
                 visible light photocatalytic performance[J]. Materials Letters, 2018,   [69]  DU Y H (杜勇慧), LI Y  H (李玉环), YANG T X (杨桐骁), et al.
                 228: 305-308.                                     Controllable preparation and photocatalytic activity of  ZnO with
            [51]  ZOU Z M, YANG X Y, ZHANG P, et al. Trace carbon-hybridized   different morphologies[J]. Journal of  Jilin University (吉林大学学
                 ZnS/ZnO hollow nanospheres with  multi-enhanced visible-light   报), 2022, 60(6): 1452-1458.
                 photocatalytic performance[J]. Journal of  Alloys and Compounds,   [70]  CHENG T (程涛), WANG  X (汪恂), ZHU  L (朱雷),  et al. The
                 2018, 775: 481-489.                               preparation and photocatalytic properties of ZnO nanomaterials[J].
            [52]  NIKOLOUDAKIS E, LOPEZ-DUARTE I, CHARALAMBIDIS G, et   Industrial  Safety and Environmental Protection (工业安全与环保),
   76   77   78   79   80   81   82   83   84   85   86