Page 81 - 《精细化工)》2023年第10期
P. 81
第 10 期 李 合,等: ZnS/ZnO 异质结光催化剂的应用研究进展 ·2159·
photocatalytic degradation of organic pollutants[J]. Materials Reports al. Porphyrins and phthalocyanines as biomimetic tools for
(材料导报), 2023, 37(16): 39-48. photocatalytic H 2 production and CO 2 reduction[J]. Chemical Society
[33] ZHANG M F (张梦凡), ZHANG Z M (张振民), JIA J W (贾静雯), Reviews, 2022, 51(16): 6965-7045.
et al. Research progress in the design, fabrication and application of [53] GE W, LIU K, DENG S K, et al. Z-scheme g-C 3N 4/ZnO
Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals heterojunction decorated by Au nanoparticles for enhanced
Science and Engineering (有色金属科学与工程), 2020, 11(3), photocatalytic hydrogen production[J]. Applied Surface Science,
18-32. 2022, 607: 155036.
[34] LI P, HE T. Common-cation based Z-scheme ZnS@ZnO core-shell [54] TAHIR M, TASLEEM S, TAHIR B. Recent development in band
nanostructure for efficient solar-fuel production[J]. Applied Catalysis engineering of binary semiconductor materials for solar driven
B-Environmental, 2018, 238: 518-524. photocatalytic hydrogen production[J]. International Journal of
[35] POLIUKHOVA V, KHAN S, ZHU Q H, et al. ZnS/ZnO nanosheets Hydrogen Energy, 2020, 45(32): 15985-16038.
obtained by thermal treatment of ZnS/ethylenediamine as a Z-scheme [55] HONG G, KIM J H. Oxide content optimized ZnS-ZnO
photocatalyst for H 2 generation and Cr(Ⅵ) reduction[J]. Applied heterostructures via facile thermal treatment process for enhanced
Surface Science, 2021, 575: 151773. photocatalytic hydrogen production[J]. International Journal of
[36] YANG S Q (杨思琪), ZHENG Y J (郑永杰), ZHANG H R (张宏瑞), Hydrogen Energy, 2014, 39(19): 9985-9993.
et al. Research progress of g-C 3N 4-based heterojunctions in [56] BAO D, GAO P, ZHU X Y, et al. ZnO/ZnS heterostructured nanorod
photocatalytic applications[J]. Crystals Synthetic of Journal (人工晶 arrays and their efficient photocatalytic hydrogen evolution[J].
体学报), 2022, 51(6): 1110-1121. Chemistry-A European Journal, 2015, 21(36): 12728-12734.
[37] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO 3/g-C 3N 4 [57] LUAN Q R, CHEN Q F, ZHENG J, et al. Construction of
step-scheme H 2-production photocatalyst[J]. Applied Catalysis 2D-ZnS@ZnO Z-scheme heterostructured nanosheets with a highly
B-Environmental, 2019, 243: 556-565. ordered ZnO core and disordered ZnS shell for enhancing
[38] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalytic hydrogen evolution[J]. ChemNanoMat, 2020, 6(3):
photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. 470-479.
[39] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme [58] JIANG J (蒋洁), WANG G H (王国宏). Preparation and hydrogen
photocatalyst[J]. Advanced Materials, 2022, 34(11): 2107668. production performance of s-type ZnO/ZnS composites[J]. Yunnan
[40] JIANG J, WANG G H, SHAO Y C, et al. Step-scheme ZnO@ZnS Chemical Technology (云南化工), 2020, 47(4): 60-61.
hollow microspheres for improved photocatalytic H 2 production [59] WANG R Y (王若瑜), CHEN Y Y (陈阳阳), TAN J H (谭集穗),
performance[J]. Chinese Journal of Catalysis, 2022, 43(2): 329-338. et al. Research progress of Z-scheme heterojunction photocatalytic
[41] LI Y F, XIA Z L, YANG Q, et al. Review on g-C 3N 4-based S-scheme system for CO 2 reduction[J]. Petroleum Processing and
heterojunction photocatalysts[J]. Journal of Materials Science & Petrochemicals (石油炼制与化工), 2021, 52(10): 54-61.
Technology, 2022, 125: 128-144. [60] DEVI P, VERMA R, SINGH J P. Advancement in electrochemical,
[42] WANG Y C (王禹程), CAI T F (蔡天凤), ZHAO H (赵华), et al. photocatalytic, and photoelectrochemical CO 2 reduction: Recent
Research progresses of S-scheme photocatalysts in hydrogen progress in the role of oxygen vacancies in catalyst design[J]. Journal
production, CO 2 reduction and pollutant removal[J]. Petrochemical of CO 2 Utilization, 2022, 65: 102211.
Technology (石油化工), 2022, 51(10): 1242-1248. [61] XIE W K (谢汶珂), CHEN J (陈洁). Research progress on the
[43] ZHOU X B (周先波), CHEN J L (陈嘉磊), HU Y Y (胡亚一), et al. application of metal-organic frameworks for photocatalytic reduction
Research progress on modification of nano-ZnO and its photocataytic of CO 2[J]. Fine Chemicals (精细化工), 2020, 37(12): 2386-2397.
degradation performance[J]. New Chemical Materials (化工新型材 [62] LIU X J, CHEN T Q, XUE Y H, et al. Nanoarchitectonics of
料), 2019, 47(4): 47-52. MXene/semiconductor heterojunctions toward artificial photosynthesis
[44] LI H (李慧), BI F (毕菲), LI Y C (李运成), et al. Research progress via photocatalytic CO 2 reduction[J]. Coordination Chemistry
of modified zinc oxide photocatalytic nanomaterials[J]. Technology Reviews, 2022, 459: 214440.
& Development of Chemical Industry (化工技术与开发), 2022, [63] LIU Q Q (刘青青), ZHANG Q Y (张芩宇), HE J X (贺建雄), et al.
51(5): 51-54. Preparation of organozirconium polymer aerogels and photocatalytic
[45] YANG L Q, ZHAO Z J, WANG H B, et al. Synthesis of ZnO/ZnS reduction of CO 2[J]. Fine Chemicals (精细化工), 2021, 38(4):
core/shell microsphere and its photocatalytic activity for methylene 757-764.
blue and eosin dyes degradation[J]. Journal of Dispersion Science [64] XUE Z H, LUAN D Y, ZHANG H B, et al. Single-atom catalysts for
and Technology, 2019, 41(14): 2152-2158. photocatalytic energy conversion[J]. Joule, 2022, 6(1): 92-133.
[46] CUI L (崔磊), DONG J (董晶), YANG L J (杨丽娟), et al. [65] AKBARI M, SHARIFNIA S. Synthesis of ZnS/ZnO nanocomposite
Fabrication of ZnS/ZnO heterostructures and their photocatalytic through solution combustion method for high rate photocatalytic
activity[J]. Fine Chemicals (精细化工), 2018, 35(4): 580-584. conversion of CO 2 and CH 4[J]. Materials Letters, 2017, 194:
[47] MA Q, WANG Z S, JIA H X, et al. ZnS-ZnO nanocomposites: 110-113.
Synthesis, characterization and enhanced photocatatlytic performance[J]. [66] MOHAMED R M, MKHALID I A, ALHADDAD M, et al.
Journal of Materials Science: Materials in Electronics, 2016, 27(10): Enhanced CO 2 photocatalytic conversion into CH 3OH over
10282-10288. visible-light driven Pt nanoparticle-decorated mesoporous ZnO-ZnS
[48] YU L H, CHEN W, LI D Z, et al. Inhibition of photocorrosion and S-scheme heterostructures[J]. International Ceramics, 2021, 47(19):
photoactivity enhancement for ZnO via specific hollow ZnO 26779-26788.
core/ZnS shell structure[J]. Applied Catalysis B-Environmental, [67] XU L P, HU Y L, PELLIGRA C, et al. ZnO with different
2015, 164: 453-461. morphologies synthesized by solvothermal methods for enhanced
[49] MURILLO-SIERRA J C, HERNANDEZ-RAMIREZ A, ZHAO Z Y, photocatalytic activity[J]. Chemistry of Materials, 2009, 21(13):
et al. Construction of direct Z-scheme WO 3/ZnS heterojunction to 2875-2885.
enhance the photocatalytic degradation of tetracycline antibiotic[J]. [68] MARFUR N A, JAAFAR N F, KHAIRUDDEAN M A, et al. Review
Journal of Environmental Chemical Engineering, 2021, 9(2): 105111. on recent progression of modifications on titania morphology and its
[50] ZHANG Y M, YANG X Y, HE N, et al. One-step hydrothermal photocatalytic performance[J]. Acta Chimica Slovenica, 2020, 67(2):
fabrication of erythrocyte-like ZnS/ZnO composite with superior 361-374.
visible light photocatalytic performance[J]. Materials Letters, 2018, [69] DU Y H (杜勇慧), LI Y H (李玉环), YANG T X (杨桐骁), et al.
228: 305-308. Controllable preparation and photocatalytic activity of ZnO with
[51] ZOU Z M, YANG X Y, ZHANG P, et al. Trace carbon-hybridized different morphologies[J]. Journal of Jilin University (吉林大学学
ZnS/ZnO hollow nanospheres with multi-enhanced visible-light 报), 2022, 60(6): 1452-1458.
photocatalytic performance[J]. Journal of Alloys and Compounds, [70] CHENG T (程涛), WANG X (汪恂), ZHU L (朱雷), et al. The
2018, 775: 481-489. preparation and photocatalytic properties of ZnO nanomaterials[J].
[52] NIKOLOUDAKIS E, LOPEZ-DUARTE I, CHARALAMBIDIS G, et Industrial Safety and Environmental Protection (工业安全与环保),