Page 80 - 《精细化工》2023年第11期
P. 80

·2392·                            精细化工   FINE CHEMICALS                                 第 40 卷

            及 COL24h 对 NIH/3T3 的促生长作用更明显,并且                        biocompatibility of a novel compressed collagen hydrogel scaffold
            在培养的过程中,这两组样品的促生长作用保持快                                 for artificial corneas[J]. Journal of Biomedical Materials Research
                                                                   Part A, 2014, 102(6): 1782-1787.
            速增加的趋势。相比对照 COL,COL24h 更利于细                        [5]   SUO H, ZHANG J, XU M, et al, Low-temperature 3D printing of
            胞生长。胶原蛋白的三螺旋结构是其发挥生物功能                                 collagen and chitosan composite for tissue engineering[J]. Materials
                                                                   Science and Engineering C, 2021, 123:111963-111972.
            的基础。胶原蛋白能够提供细胞结合的位点,从而                             [6]   LIN K, ZHANG D, MACEDO M H, et al. Advanced collagen-based
            有利于细胞的贴壁和繁殖。经冷冻研磨处理后的胶                                 biomaterials for  regenerative biomedicine[J]. Advanced Functional
            原蛋白改变了分子间的相互作用力,可能暴露出更                                 Materials, 2019, 29(3): 1804943.
                                                               [7]   LAZURKO C, KHATOON Z, GOEL K, et al. Multifunctional nano
            多的结合位点,更利于细胞生长和繁殖。                                     and collagen-based therapeutic  materials for skin repair[J]. ACS
                                                                   Biomaterials Science & Engineering, 2020, 6: 1124-1134.
                                                               [8]   SBRICOLI L, GUAZZO  R, ANUNZIATA M,  et al. Selection of
                                                                   collagen membranes for bone regeneration: A literature review[J].
                                                                   Materials, 2020, 13: 786-801.
                                                               [9]   XU J, ZHENG S, HU X, et al. Advances in the research of bioinks
                                                                   based on  natural collagen, polysaccharide and their derivatives for
                                                                   skin 3D bioprinting[J]. Polymers, 2020, 12: 1237-1267.
                                                               [10]  KOLODZIEJSKA B, KAFLAK A, KOLMAS J. Biologically inspired
                                                                   collagen/apatite composite biomaterials for potential use in bone
                                                                   tissue regeneration—A review[J]. Materials, 2020, 13: 1748-1764.
                                                               [11]  ADZALY N Z, JACKSON A, KANG I, et al. Performance of a novel
                                                                   casing made of chitosan  under traditional sausage manufacturing

                                                                   conditions[J]. Meat Science, 2016, 113: 116-123.
                *代表 P<0.05;***代表 P<0.001;****代表 P<0.0001       [12]  CHEN C, LIU F, YU Z,  et al. Improvement in physicochemical
                  图 9  NIH/3T3 在样品中培养 1~5 d 的活性                    properties  of collagen casings by glutaraldehyde cross-linking and
             Fig. 9    Activity of NIH/3T3 after 1~5 d incubation in samples   drying temperature regulating[J]. Food Chemistry, 2020, 318: 1-9.
                                                               [13]  YANG J,  WANG  H B, HE L,  et al. Reconstituted fibril from
                                                                   heterogenic collagens-A new method to regulate properties of collagen
                                                                   gels[J]. Macromolecular Research, 2019, 27(11): 1124-1135.
            3   结论                                             [14]  PRASHANT  K  B, PADMA  B D. Isolation, characterization and
                                                                   valorizable applications of fish scale collagen in food and agriculture
                 运用冷冻研磨技术,通过改变预冻时间对天然                              industries[J]. Biocatalysis and Agricultural Biotechnology, 2016, 7:
            牛跟腱胶原蛋白海绵进行粉碎处理,以期实现研磨                                 234-240.
                                                               [15]  DAI L, NAN J, TU X,  et al. Improved thermostability and
            产物的性能调控。SDS-PAGE 和 CD 实验结果发现,                          cytocompatibility of bacterial cellulose/collagen composite by collagen
            冷冻时间分别为 3、6 h 时,有少量小分子条带,而                             fibrillogenesis[J]. Cellulose, 2019, 26(11): 6713-6724.
            冷冻 24 h 后胶原蛋白的肽链结构保持得更完整。                          [16]  JOSE F  W, BOLESLAV Z,  ONDREJ Š,  et al. Study of the
                                                                   shear-thinning effect between polymer  nanoparticle surfaces during
            AFM 和 SEM 实验证明,冷冻研磨得到的胶原蛋白                             shear-induced aggregation[J]. Industrial & Engineering  Chemistry
            保持体外自组装能力,COL24h 组装得到的胶原蛋                              Research, 2021, 60, 29: 10654-10665.
                                                               [17]  SUN M, WEI X, WANG H B,  et al. Structure restoration  of
            白纤维直径与 COL 无显著性差异。溶解度实验表
                                                                   thermally denatured collagen by ultrahigh pressure treatment[J].
            明,冷冻研磨可以显著提高胶原蛋白的水溶性                                   Food Bioprocess Technology, 2020, 13(2): 367-378.
            (4 ℃),COL24h 比未经任何处理的天然胶原蛋白                        [18]  JIANG Y, WANG H B, DENG M X, et al. Effect of ultrasonication
                                                                   on the fibril-formation and gel properties of collagen from grass carp
            (COL)的溶解度提高近 3 倍,这将对胶原蛋白作                              skin[J]. Materials Science & Engineering C-Materials for Biological
            为医美材料的应用有更好的支撑作用。细胞生物学                                 Applications, 2016, 59(1): 1038-1046.
            实验揭示,相比于天然胶原蛋白,研磨后的胶原蛋                             [19]  FERNÁNDEZ-BERTRAN J F. Mechanochemistry: An overview[J].
                                                                   Pure and Applied Chemistry, 1999, 71(4): 581-586.
            白材料对细胞的促生长作用提高,冷冻研磨得到的                             [20]  PESEK C A, WILSON L A. Spice quality: Effect of cryogenic and
            胶原蛋白粉末材料将拓宽胶原蛋白在创伤修复领域                                 ambient grinding on color[J]. Journal of Food Science, 1986, 51(5):
                                                                   1386-1386.
            的影响。
                                                               [21]  RUTH N, PAUZI M R, HASNAH B. Current insights into collagen
                                                                   type I[J]. Polymers, 2021, 13: 2642-2661.
            参考文献:                                              [22]  GHODBANE S A, DUNN M. Physical and mechanical properties of
            [1]   HE L, YANG J, XU C Z, et al. Effect of pre-shearing treatment on   cross-linked typeⅠcollagen scaffolds derived from bovine, porcine,
                 the molecular structure, fibrillogenesis behavior and gel properties of   and ovine tendons[J]. Journal of Biomedical Materials Research Part
                 collagen[J]. New Journal of Chemistry, 2020, 44(17): 6760-6770.   A, 2016, 104: 2685-2692.
            [2]   ELLA J. Collagen structure: New tricks from a very old dog[J].   [23]  LUND  A M, HANSE M, KOLLERUP G,  et al. Collagen-derived
                 Biochemical Journal, 2016, 473(8): 1001-1025.     markers of bone metabolism in osteogenesis imperfecta[J]. Acta
            [3]   BUNYARATAVEI P, WANG H. Collagen membranes: A review[J].   Paediatrica, 2010, 87(11): 1131-1137.
                 Journal of Periodontology, 2017, 72(2): 215-229.   [24]  MEHDI A, MASOUD R, ALI J,  et al. Sequential extraction of
            [4]   XIAO X H, PAN S Y,  LIU X N,  et al.  In vivo study of the   gel-forming proteins, collagen and collagen hydrolysate from gutted
   75   76   77   78   79   80   81   82   83   84   85