Page 116 - 《精细化工》2023年第12期
P. 116
·2658· 精细化工 FINE CHEMICALS 第 40 卷
Frontiers in Materials, 2020, 7: 1-16. 594-601.
[6] ZHANG Y, YUAN X, LU W, et al. MnO 2 based sandwich structure [20] WANG Z, LEE Y H, KIM S W, et al. Why cellulose-based
electrode for supercapacitor with large voltage window and high electrochemical energy storage devices[J]. Advanced Materials,
mass loading[J]. Chemical Engineering Journal, 2019, 368: 525-532. 2021, 33(28): e2000892.
[7] MOHIT S, KAUSHIK N, MOBIN S M. Robust nanocomposite of [21] XU T, DU H, LIU H, et al. Advanced nanocellulose-based composites
nitrogen-doped reduced graphene oxide and MnO 2 nanorods for for flexible functional energy storage devices[J]. Advanced Materials,
high-performance supercapacitors and nonenzymatic peroxide 2021, 33(48): e2101368.
sensors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): [22] HU Z A (胡中爱), WANG C J (王成娟), LI Z M (李志敏). Preparation
10489-10504. and electrochemical properties of MnO 2 solid supercapacitors[J].
[8] JYOTHIBASU J P, WANG R H, ONG K, et al. Cellulose/carbon Journal of Northwest Normal University: Natural Science (西北师范
nanotube/MnO 2 composite electrodes with high mass loadings for 大学学报: 自然科学版), 2021, 57(1): 63-69.
symmetric supercapacitors[J]. Cellulose, 2021, 28(6): 3549-3567. [23] HUANG H D, LIU C Y, ZHANG L Q, et al. Simultaneous
[9] CHEN H, ZENG S, CHEN M, et al. Oxygen evolution assisted reinforcement and toughening of carbon nanotube/cellulose conductive
fabrication of highly loaded carbon nanotube/MnO 2 hybrid films for nanocomposite films by interfacial hydrogen bonding[J]. ACS
high-performance flexible pseudo supercapacitors[J]. Small, 2016, Sustainable Chem Eng, 2015, 3(2): 317-324.
12(15): 2035-2045. [24] GAO L (高璐), CHEN L (陈琳), HONG F (洪枫). Effect of CNT
[10] WANG L, HUANG M, CHEN S, et al. δ-MnO 2 nanofiber/single- concentration on the physical and electrochemical properties of
walled carbon nanotube hybrid film for all-solid-state flexible
CNT@BC nanocomposite film[J]. Journal of Cellulose Science and
supercapacitors with high performance[J]. Journal of Materials
Technology (纤维素科学与技术), 2020, 28(4): 28-37.
Chemistry A, 2017, 5(36): 19107-19115.
[25] CHEN Y X, CAI K F, LIU C C, et al. High-performance and
[11] PATIL B, AHN S, PARK C, et al. Simple and novel strategy to
breathable polypyrrole coated air-laid paper for flexible all-solid-
fabricate ultra-thin, lightweight, stackable solid-state supercapacitors
state supercapacitors[J]. Advanced Energy Materials, 2017, 7(21):
based on MnO 2-incorporated CNT-web paper[J]. Energy, 2018, 142:
1701247-1701260.
608-616.
[26] BAO J, HOU C, DONG Q, et al. ELP-OPH/BSA/TiO 2 nanofibers/
[12] HUANG Z H, SONG Y, FENG D Y, et al. High mass loading MnO 2
c-MWCNTs based biosensor for sensitive and selective determination of
with hierarchical nanostructures for supercapacitors[J]. ACS Nano,
p-nitrophenyl substituted organophosphate pesticides in aqueous
2018, 12(4): 3557-3567.
system[J]. Biosensors and Bioelectronics, 2016, 85: 935-942.
[13] JIANG G H (蒋光辉), OUYANG Q S (欧阳全胜), HU M Y (胡敏艺),
[27] FAN F D, ZHOU J, SHENG L, et al. Juglone bonded carbon nanotubes
et al. Research progress in preparation and application of manganese
interweaving cellulose nanofibers as self-standing membrane
dioxide/graphene composites[J]. Hunan Nonferrous Metals (湖南有
electrodes for flexible high energy supercapacitors[J]. Chemical
色金属), 2021, 37(4): 51-55.
Engineering Journal, 2020, 396: 125325.
[14] LIANG X, LI H, DOU J, et al. Stable and biocompatible carbon
[28] PENG X W, WU K Z, HU Y J, et al. A mechanically strong and
nanotube ink mediated by silk protein for printed electronics[J]. Adv
sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors
Mater, 2020, 32(31): e2000165.
[J]. Journal of Materials Chemistry A, 2018, 6(46): 23550-23559.
[15] CHEN Z Y (陈泽宇), LIU J (刘静), PU C S (蒲春生), et al. Surfactant-
[29] ZHAO Q, SONG A, DING S, et al. Preintercalation strategy in
assisted multi-walled carbon nanotubes dispersion: Mechanism and
manganese oxides for electrochemical energy storage: Review and
properties evaluation[J]. Fine Chemicals (精细化工), 2022, 39(2):
prospects[J]. Advanced Materials, 2020, 32(50): 200245.
269-275.
[30] ZHU C, YANG L, SEO J K, et al. Self-branched α-MnO 2/δ-MnO 2
[16] FENG X, WANG X, ZHANG C, et al. Highly conductive and
heterojunction nanowires with enhanced pseudocapacitance[J].
multifunctional nanocomposites based on sulfated nanocellulose-
Materials Horizons, 2017, 4: 1-30.
assisted high dispersion limit of single-walled carbon nanotubes[J].
[31] PARAYANGATTIL J J, CHEN M Z, LEE R H. Polypyrrole/carbon
Carbon, 2021, 183: 187-195.
[17] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double- nanotube freestanding electrode with excellent electrochemical
network structural materials for electromagnetic shielding[J]. Nano properties for high-performance all-solid-state supercapacitors[J].
Lett, 2021, 21(6): 2532-2537. ACS Omega, 2020, 5(12): 6441-6451.
[18] HONG F (洪帆), SONG J (宋洁), BAI J (白洁), et al. Research [32] DONG L B, XU C J, LI Y, et al. Flexible electrodes and
progress on functional modification of bacterial cellulose[J]. Fine supercapacitors for wearable energy storage: A review by category[J].
Chemicals (精细化工), 2021, 38(12): 2377-2384. Journal of Materials Chemistry A, 2016, 4(13): 4659-4685.
[19] ZHOU J, YUAN Y, TANG J, et al. Metal-organic frameworks [33] BOYD S, GANESHAN K, TSAI W Y, et al. Effects of interlayer
governed well-aligned conducting polymer/bacterial cellulose membranes confinement and hydration on capacitive charge storage in
with high areal capacitance[J]. Energy Storage Materials, 2019, 23: birnessite[J]. Nature Materials, 2021, 20(12): 1689-1694.