Page 114 - 《精细化工》2023年第2期
P. 114

·336·                             精细化工   FINE CHEMICALS                                 第 40 卷

                 59(7): 976-979.                                   Salvia miltiorrhiza oil and dandelion extract in cosmetics industry[J].
            [13]  DIZMAN B, ELASRI M O, MATHIAS L J. Synthesis and   Fine Chemicals (精细化工), 2022, 39(3): 562-568.
                 antimicrobial activities of new water soluble bis-quaternary ammonium   [20]  DESBOIS A P, SMITH V J. Antibacterial free fatty acid: Activities,
                 methacrylate polymers[J]. Journal of Applied Polymer Science, 2004,   mechanisms of action and biotechnological potential[J]. Applied
                 94: 635-642.                                      Microbiology and Biotechnology, 2010, 85: 1629-1642.
            [14]  YANG Q L (杨巧丽). Study on fatty acid composition, antibacterial   [21]  MA Q M,  DAVIDSON P M,  ZHONG Q X. Nanoemulsions of
                 and antioxidant test of crude extract of Eucalyptus leaves[D].   thymol and eugenol co-emulsified by lauric arginate and lecithin[J].
                 Changsha: Central South University of Forestry Science and   Food Chemistry, 2016, 206: 167-173.
                 Technology (中南林业科技大学), 2013.                  [22]  MA Q M, DAVIDSON P M, ZHONG Q X. Antimicrobial properties
            [15]  KITAHARA T, KOYAMA  N, MATSUDA J,  et al. Antimicrobial   of lauric arginate alone or in combination with essential oils in tryptic
                 activity of saturated fatty acids and fatty amines against methicillin-   soy broth and 2% reduced fat milk[J]. Internationa Journal of Food
                 resistant  Staphylococcus aureus[J]. Biological and Pharmaceutical   Microbiology, 2013, 166: 77-84.
                 Bulletin, 2004, 27(9): 1321-1326.             [23]  WEI Q  Y, JIANG H, ZHANG J X,  et al. Synthesis  of
            [16]  LIU M (刘敏). Study on extraction, content determination and   N-hydroxycinnamoylamino acid ester analogues and their free radical
                 antibacterial activity of fatty acids from  cereal  worm[D].  Dalian:   scavenging and antioxidative activities[J]. Medicinal Chemistry
                 Liaoning Normal University (辽宁师范大学), 2017.        Research, 2012, 21(8): 1905-1911.
            [17]  ZHANG H,  ZHANG L, PENG  L J,  et al. Quantitative structure-   [24]  RODRIGUEZ E,  SEGUER J, ROCABAYERA  X,  et al. Cellular
                 activity relationships of antimicrobial fatty acids and derivatives   effects of monohydrochloride  of L-arginine,  N-lauroyl ethylester
                 against  Staphylococcus aureus[J]. Journal  of Zhejiang  University   (LAE) on exposure to Salmonella typhimurium and Staphylococcus
                 Science B, 2012, 13(2): 83-93.                    aureus[J]. Journal of Applied Microbiology, 2004, 96: 903-912.
            [18]  ISMAIL A, KTARI L, BEN R R Y, et al. Antimicrobial fatty acids   [25]  NGO H, WAGNER K, YAN Z C, et al. Synthesis and anti-Listeria
                 from green alga  Ulva rigida  (Chlorophyta)[J]. BioMed Research   properties of odorless hybrid bio-based n-phenolic vegetable branched-
                 International, 2018, 2018: 1-12.                  chain fatty acids[J]. Journal of the American Oil Chemists Society,
            [19]  WU Y (吴颖), LIU Q (刘晴), TANG W (唐文), et al. Application of   2019, 96(10): 1093-1101.



            (上接第 329 页)                                        [23]  CAI Y (蔡悦 ), ZHENG S Y (郑斯 尹 ), HU Y (胡艳 ), et al.
                                                                   Preparation and adsorption behavior of mesoporous silica MCM-41
            [12]  CHARLES M A,  FANSKA R, SCHMID F G,  et al. Adenosine   derived from organo-silicone waste residue[J]. Journal of the Chinese
                 3',5'-monophosphate in pancreatic islets: Glucose-induced insulin   Ceramic Society (硅酸盐学报), 2021, 49(7): 1412-1419.
                 release[J]. Science, 1973, 179(4073): 569-571.   [24]  CHEN H S (陈和生), SUN Z  Y (孙振亚), SHAO J C (邵景昌).
            [13]  BLOXHAM D P, KLAIPONGPAN A. The involvement of adenosine   Investigate on FTIR spectroscopy for eight different sources of
                 3',5-cyclic  monophosphate in the translational control of protein   SiO 2[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报),
                 synthesis[J]. The International journal of Biochemistry, 1979, 10(1):   2011, 30(4): 934-937.
                 1-5.                                          [25] YUAN  L  (袁丽).  Preparation of  stimuli-responsive nanomaterials
            [14]  HANSSON V, SKÅLHEGG B S, TASKÉN K.  Cyclic-AMP-   and their application in controlled drug delivery[D]. Shanghai: Fudan
                 dependent protein kinase (PKA) in testicular cells. Cell specific   University (复旦大学), 2013.
                 expression, differential  regulation  and  targeting of subunits of   [26]  PHILLIPS M D, JAMES T D. Boronic acid based modular
                 PKA[J]. The Journal of Steroid Biochemistry and Molecular Biology,   fluorescent sensors for glucose[J]. Journal of Fluorescence, 2004,
                 2000, 73(1/2): 81-92.                             14(5): 549-559.
            [15]  YAN  K,  GAO L N, CUI Y L,  et al.  The cyclic AMP signaling   [27]  SPRINGSTEEN G, WANG B H. A detailed examination of boronic
                 pathway: Exploring targets for successful drug discovery[J].   acid-diol complexation[J]. Tetrahedron, 2002, 58(26): 5291-5300.
                 Molecular Medicine Reports, 2017, 13(5): 3715-3723.   [28]  ZHAO Y N, TREWYN B G, SLOWING I I, et al. Mesoporous silica
            [16]  GAO Z Y, LEI W I, LEE L T O. The role of neuropeptide-stimulated   nanoparticle-based double drug delivery system for glucose-
                 cAMP-EPACs signalling in cancer cells[J]. Molecules, 2022, 27(1):   responsive controlled release of insulin and cyclic AMP[J]. Journal
                 311.                                              of the American Chemical Society, 2009, 131(24): 8398-8400.
            [17]  JENS K, STEPHEN K, FRANK S, et al. Bioactivatable derivatives   [29]  FANG H, KAUR  G, WANG B  H. Progress in boronic acid-based
                 of 8-substituted  cAMP-analogues[J]. Bioorganic & Medicinal   fluorescent glucose sensors[J]. Journal of Fluorescence, 2004, 14(5):
                 Chemistry Letters, 1997, 7(7): 945-948.           481-489.
            [18]  WU Q, WANG L, YU H J, et al. Organization of glucose-responsive   [30]  DAIJRO S, KAZUNORI K, YOSHIYUKI K, et al. A self-regulated
                 systems  and their properties[J]. Chemical Reviews, 2011, 111(12):   insulin delivery system using boronic acid gel[J]. Journal of
                 7855-7875.                                        Intelligent Material Systems and Structures, 1994, 5(3): 311-314.
            [19]  WU S S, HUANG X, DU X Z. Glucose- and pH-responsive   [31]  ZHENG Y Z  (郑亚珍). Investigation on nano mesoporous silica
                 controlled  release of cargo  from protein-gated carbohydrate-   based glucose-responsive insulin delivery system[D]. Zhengzhou:
                 functionalized  mesoporous silica nanocontainers[J]. Angewandte   Zhengzhou University (郑州大学), 2018.
                 Chemie International Edition, 2013, 52(21): 5580-5584.   [32]  MATSUMOTO  A, IKEDA S, HARADA  A,  et al. Glucose-
            [20]  BAPAT A P, ROY D, SUMERLIN B S. Dynamic-covalent   responsive polymer bearing a novel  phenylborate derivative as a
                 macromolecular stars with boronic ester linkages[J]. Journal of the   glucose-sensing moiety operating at physiological pH conditions[J].
                 American Chemical Society, 2011, 133(49): 19832-19838.   Biomacromolecules, 2003, 4(5): 1410-1416.
            [21]  SLOWING I I,  TREWYN B G, LIN  V S Y. Mesoporous silica   [33]  SUCKALE J, SOLIMENA M. Pancreas islets in  metabolic
                 nanoparticles for intracellular delivery of  membrane-impermeable   signaling-focus on the beta-cell[J]. Frontiers in Bioscience-Landmark,
                 proteins[J]. Journal of the American Chemical Society, 2007,   2008, 13(18): 7156-7171.
                 129(28): 8845-8849.                           [34]  RADU D  R, LAI C Y, JEFTINIJA K,  et al. A polyamidoamine
            [22]  YANG J, TU J, LAMERS G E M, et al. Membrane fusion mediated   dendrimer-capped mesoporous silica nanosphere-based gene transfection
                 intracellular  delivery of lipid bilayer coated mesoporous  silica   reagent[J]. Journal of the American Chemical Society, 2004, 126(41):
                 nanoparticles[J]. Advanced Healthcare Materials, 2017, 6(20): 1700759.   13216-13217.
   109   110   111   112   113   114   115   116   117   118   119