Page 133 - 《精细化工》2023年第2期
P. 133

第 2 期                  卫学玲,等: NF@Ni 3 S 4 @CoFe-LDHs 电极用于尿素辅助碱性析氧                        ·355·



            参考文献:                                                  heterostructures[J]. Applied Catalysis B: Environmental, 2020, 273:
                                                                   119014-1190020.
            [1]   ANJUM M A, JEONG H  Y,  LEE M H,  et al. Efficient hydrogen   [15]  CHEN J D, ZHENG F, ZHANG S J,  et al. Interfacial interaction
                 evolution reaction  catalysis in alkaline  media by all-in-one MoS 2   between FeOOH and Ni-Fe LDH to  modulate the local electronic
                 with multifunctional active sites[J].  Advanced Materials, 2020, 30   structure for enhanced OER electrocatalysis[J]. ACS Catalysis, 2018,
                 (20): 1707105-1707113.                            8: 11342-11351.
            [2]   WANG H X (王红霞), XU W Y (徐婉怡), ZHANG Z X (张早校).
                 Development status and suggestions of green hydrogen energy produced   [16]  ZHOU L X,  GUO M C, LI Y,  et al. One-step synthesis of wire-
                 by water electrolysis from renewable energy[J]. Chemical Industry and   in-plate nanostructured materials  made of CoFe-LDH nanoplates
                 Engineering Progress (化工进展), 2022, 41(S1): 118-131.   coupled with Co(OH) 2 nanowires grown on Ni foam for high-
            [3]   CHEN B W (陈保卫), GAO W J (高文君), DU S M (杜庶铭), et al.   efficiency oxygen evolution reaction[J]. Chemical Communications,
                 Synthesis and catalytic performance comparison of rod-shaped FeS 2/   2019, 55(29): 4218-4221.
                 NiS 2 and FeP/Ni 2P[J]. Fine Chemicals (精细化工), 2020, 37(12):   [17]  DU X Q, LI J X, ZHANG X S, et al. Fe and Cu dual-doped Ni 3S 4
                 2467-2473.                                        nanoarray with less low-valence Ni  species for boosting water
            [4]   WANG C, LU H L, MAO Z Y, et al. Bimetal schottky heterojunction   oxidation reaction[J]. Dalton Transactions, 2022, 51(4): 1594-1602.
                 boosting energy-saving hydrogen production from alkaline water via   [18]  WANG H  Q, ZHANG W J, ZHANG X W,  et al. Multi-interface
                 urea electrocatalysis[J]. Advanced  Functional Materials, 2020,   collaboration of graphene cross-linked NiS-NiS 2-Ni 3S 4 polymorph
                 30(21): 2000556-2000565.                          foam towards robust hydrogen evolution in alkaline electrolyte[J].
            [5]   YANG X  Y, KANG L  Y, WEI  Z  M,  et al. A  self-sacrificial   Nano Research, 2021, 14: 4857-4864.
                 templated route to fabricate CuFe prussian blue  analogue/   [19]  ZHANG Y X, YANG M, JIANG X, et al. Self-supported hierarchical
                 Cu(OH) 2 nanoarray  as an  efficient  pre-catalyst for ultrastable   CoFe-LDH/NiCo 2O 4/NF core-shell nanowire arrays as an effective
                 bifunctional electro-oxidation[J]. Chemical Engineering Journal,   electrocatalyst for  oxygen evolution reaction[J]. Journal of Alloys
                 2021, 422: 130139-130145.                         and Compounds, 2020, 818: 153345-153351.
            [6]   LI J N, LI J P, GONG M, et al. Catalyst design and progresses for   [20]  WEI X L (卫学玲), ZOU X Y (邹祥宇), BAO W W (包维维), et al.
                 urea oxidation electrolysis in alkaline media[J]. Topics in Catalysis,   Fast interface engineering of FeOOH@CoNi-LDH@NF for efficient
                 2021, 64: 532-558.                                oxygen evolution reaction[J]. Fine Chemicals (精细化工), 2022,
            [7]   LI Y, HU L S, ZHENG W R, et al. Ni/Co-based nanosheet arrays for   39(3): 577-583.
                 efficient oxygen evolution reaction[J]. Nano Energy, 2018, 52: 360-368.   [21]  TONG R, XU M,  HUANG H M,  et al. 3D V-Ni 3S 2@CoFe-LDH
            [8]   DURATE  M F,  ROCHA I  M, FUGUEIRDEDO J L,  et al. CoMn-   core-shell electrocatalysts for efficient water oxidation[J]. International
                 LDH@carbon nanotube composites: Bifunctional electrocatalysts for   Journal of Hydrogen Energy, 2021, 46(80): 39636- 39644.
                 oxygen reactions[J]. Catalysis Today, 2018, 301: 17-24.   [22]  XIE J F, GAO L, CAO S S, et al. Copper-incorporated hierarchical
            [9]   HU J, ZHANG C  X, ZHANG  Y  Z,  et al. Interface  modulation of   wire-on-sheet α-Ni(OH) 2 nanoarrays as robust trifunctional catalysts
                 MoS 2/metal oxide heterostructures for efficient hydrogen evolution   for synergistic hydrogen generation and urea oxidation[J]. Journal of
                 electrocatalysis[J]. Small, 2020, 16(28): 2002212-2002220.   Materials Chemistry A, 2019, 7(22): 13577-13584.
            [10]  WANG X, LIU C K, LI Q, et al. 3D heterogeneous Co 3O 4@Co 3S 4   [23]  WANG T, WU H M, FENG C Q, et al. MoP@NiCo-LDH on nickel
                 nanoarrays grown on Ni foam as a binder-free electrode for lithium-   foam as bifunctional electrocatalyst for  high efficiency water and
                 ion batteries[J]. ChemElectroChem, 2018, 5(12): 309-315.   urea-water electrolysis[J]. Journal of Materials Chemistry A, 2020,
            [11]  FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides:   8(35): 18106-18116.
                 Design, modulation, and challenges in electrocatalysis[J]. Advanced   [24]  WANG X Y, ZHAN W Z, ZHANG J L, et al. Co(OH) 2 nanosheets
                                                                              2+
                 Materials, 2021, 33(16): 1907818-1907841.         array doped by Cu  ions with optimal electronic structure for urea-
            [12]  CAO J M, ZHOU J, ZHANG Y F, et al. Dominating role of aligned   assisted electrolytic hydrogen  generation[J]. ChemElectro Chem,
                 MoS 2/Ni 3S 2 nanoarrays supported on three-dimensional Ni foam with   2021, 8(10): 1881-1891.
                 hydrophilic interface for highly enhanced hydrogen evolution reaction[J].   [25]  LI R Q, WAN X Y, CHEN B L, et al. Hierarchical Ni 3N/Ni 0.2Mo 0.8N
                 ACS Applied Materials Interfaces, 2018, 10(2): 1752-1760.   heterostructure nanorods arrays as efficient electrocatalysts for overall
            [13]  MOHAMMED-IBRAHIM J. A review on NiFe-based electro catalysts   water and urea electrolysis[J]. Chemical Engineering Journal, 2021,
                 for efficient alkaline oxygen evolution reaction[J]. Journal of Power   409: 128240-128246.
                 Sources, 2020, 448: 227375-227424.            [26]  HU S N, FENG C Q, WANG S Q,  et al. Ni 3N/NF as bifunctional
            [14]  HUA  L Y, ZENG  X, WEI X Q,  et al. Interface engineering for   catalysts for both  hydrogen generation and urea decomposition[J].
                 enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe   ACS Applied Materials Interfaces, 2019, 11: 13168-13175.
   128   129   130   131   132   133   134   135   136   137   138