Page 133 - 《精细化工》2023年第2期
P. 133
第 2 期 卫学玲,等: NF@Ni 3 S 4 @CoFe-LDHs 电极用于尿素辅助碱性析氧 ·355·
参考文献: heterostructures[J]. Applied Catalysis B: Environmental, 2020, 273:
119014-1190020.
[1] ANJUM M A, JEONG H Y, LEE M H, et al. Efficient hydrogen [15] CHEN J D, ZHENG F, ZHANG S J, et al. Interfacial interaction
evolution reaction catalysis in alkaline media by all-in-one MoS 2 between FeOOH and Ni-Fe LDH to modulate the local electronic
with multifunctional active sites[J]. Advanced Materials, 2020, 30 structure for enhanced OER electrocatalysis[J]. ACS Catalysis, 2018,
(20): 1707105-1707113. 8: 11342-11351.
[2] WANG H X (王红霞), XU W Y (徐婉怡), ZHANG Z X (张早校).
Development status and suggestions of green hydrogen energy produced [16] ZHOU L X, GUO M C, LI Y, et al. One-step synthesis of wire-
by water electrolysis from renewable energy[J]. Chemical Industry and in-plate nanostructured materials made of CoFe-LDH nanoplates
Engineering Progress (化工进展), 2022, 41(S1): 118-131. coupled with Co(OH) 2 nanowires grown on Ni foam for high-
[3] CHEN B W (陈保卫), GAO W J (高文君), DU S M (杜庶铭), et al. efficiency oxygen evolution reaction[J]. Chemical Communications,
Synthesis and catalytic performance comparison of rod-shaped FeS 2/ 2019, 55(29): 4218-4221.
NiS 2 and FeP/Ni 2P[J]. Fine Chemicals (精细化工), 2020, 37(12): [17] DU X Q, LI J X, ZHANG X S, et al. Fe and Cu dual-doped Ni 3S 4
2467-2473. nanoarray with less low-valence Ni species for boosting water
[4] WANG C, LU H L, MAO Z Y, et al. Bimetal schottky heterojunction oxidation reaction[J]. Dalton Transactions, 2022, 51(4): 1594-1602.
boosting energy-saving hydrogen production from alkaline water via [18] WANG H Q, ZHANG W J, ZHANG X W, et al. Multi-interface
urea electrocatalysis[J]. Advanced Functional Materials, 2020, collaboration of graphene cross-linked NiS-NiS 2-Ni 3S 4 polymorph
30(21): 2000556-2000565. foam towards robust hydrogen evolution in alkaline electrolyte[J].
[5] YANG X Y, KANG L Y, WEI Z M, et al. A self-sacrificial Nano Research, 2021, 14: 4857-4864.
templated route to fabricate CuFe prussian blue analogue/ [19] ZHANG Y X, YANG M, JIANG X, et al. Self-supported hierarchical
Cu(OH) 2 nanoarray as an efficient pre-catalyst for ultrastable CoFe-LDH/NiCo 2O 4/NF core-shell nanowire arrays as an effective
bifunctional electro-oxidation[J]. Chemical Engineering Journal, electrocatalyst for oxygen evolution reaction[J]. Journal of Alloys
2021, 422: 130139-130145. and Compounds, 2020, 818: 153345-153351.
[6] LI J N, LI J P, GONG M, et al. Catalyst design and progresses for [20] WEI X L (卫学玲), ZOU X Y (邹祥宇), BAO W W (包维维), et al.
urea oxidation electrolysis in alkaline media[J]. Topics in Catalysis, Fast interface engineering of FeOOH@CoNi-LDH@NF for efficient
2021, 64: 532-558. oxygen evolution reaction[J]. Fine Chemicals (精细化工), 2022,
[7] LI Y, HU L S, ZHENG W R, et al. Ni/Co-based nanosheet arrays for 39(3): 577-583.
efficient oxygen evolution reaction[J]. Nano Energy, 2018, 52: 360-368. [21] TONG R, XU M, HUANG H M, et al. 3D V-Ni 3S 2@CoFe-LDH
[8] DURATE M F, ROCHA I M, FUGUEIRDEDO J L, et al. CoMn- core-shell electrocatalysts for efficient water oxidation[J]. International
LDH@carbon nanotube composites: Bifunctional electrocatalysts for Journal of Hydrogen Energy, 2021, 46(80): 39636- 39644.
oxygen reactions[J]. Catalysis Today, 2018, 301: 17-24. [22] XIE J F, GAO L, CAO S S, et al. Copper-incorporated hierarchical
[9] HU J, ZHANG C X, ZHANG Y Z, et al. Interface modulation of wire-on-sheet α-Ni(OH) 2 nanoarrays as robust trifunctional catalysts
MoS 2/metal oxide heterostructures for efficient hydrogen evolution for synergistic hydrogen generation and urea oxidation[J]. Journal of
electrocatalysis[J]. Small, 2020, 16(28): 2002212-2002220. Materials Chemistry A, 2019, 7(22): 13577-13584.
[10] WANG X, LIU C K, LI Q, et al. 3D heterogeneous Co 3O 4@Co 3S 4 [23] WANG T, WU H M, FENG C Q, et al. MoP@NiCo-LDH on nickel
nanoarrays grown on Ni foam as a binder-free electrode for lithium- foam as bifunctional electrocatalyst for high efficiency water and
ion batteries[J]. ChemElectroChem, 2018, 5(12): 309-315. urea-water electrolysis[J]. Journal of Materials Chemistry A, 2020,
[11] FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides: 8(35): 18106-18116.
Design, modulation, and challenges in electrocatalysis[J]. Advanced [24] WANG X Y, ZHAN W Z, ZHANG J L, et al. Co(OH) 2 nanosheets
2+
Materials, 2021, 33(16): 1907818-1907841. array doped by Cu ions with optimal electronic structure for urea-
[12] CAO J M, ZHOU J, ZHANG Y F, et al. Dominating role of aligned assisted electrolytic hydrogen generation[J]. ChemElectro Chem,
MoS 2/Ni 3S 2 nanoarrays supported on three-dimensional Ni foam with 2021, 8(10): 1881-1891.
hydrophilic interface for highly enhanced hydrogen evolution reaction[J]. [25] LI R Q, WAN X Y, CHEN B L, et al. Hierarchical Ni 3N/Ni 0.2Mo 0.8N
ACS Applied Materials Interfaces, 2018, 10(2): 1752-1760. heterostructure nanorods arrays as efficient electrocatalysts for overall
[13] MOHAMMED-IBRAHIM J. A review on NiFe-based electro catalysts water and urea electrolysis[J]. Chemical Engineering Journal, 2021,
for efficient alkaline oxygen evolution reaction[J]. Journal of Power 409: 128240-128246.
Sources, 2020, 448: 227375-227424. [26] HU S N, FENG C Q, WANG S Q, et al. Ni 3N/NF as bifunctional
[14] HUA L Y, ZENG X, WEI X Q, et al. Interface engineering for catalysts for both hydrogen generation and urea decomposition[J].
enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe ACS Applied Materials Interfaces, 2019, 11: 13168-13175.