Page 142 - 《精细化工》2023年第2期
P. 142
·364· 精细化工 FINE CHEMICALS 第 40 卷
次时能耗出现较大升高,铅能耗增加至 580 kW·h/t 以 (MSA)[J]. Hydrometallurgy, 2014, 142: 23-35.
[8] JIN B J, DREISINGER D B. A green electrorefining process for
上。而净化后的铅能耗较低,约为 550~560 kW·h/t。 production of pure lead from methanesulfonic acid medium[J].
Separation and Purification Technology, 2016, 170: 199-207.
[9] FENG Q C, WEN S M, WANG Y J, et al. Dissolution kinetics of
3 结论 cerussite in an alternative leaching reagent for lead[J]. Chemical
Papers, 2015, 69(3): 440-447.
[10] LANG Q C (郎庆成), WANG Y L (王云立),XIAO X B (肖向彬), et al.
(1)通过对杂质铜的电化学行为研究发现,Cu 2+ Study on a new green and high-efficiency purification technology of
2+
2+
对电解铅过程中的主要影响为:Cu 优先于 Pb 析 lead-tin alloy[J]. Recyclable Resources and Circular Economy (再生
资源与循环经济), 2019, 12(7): 24-29.
出,造成电解铅的纯度下降,同时使还原铅的电流 [11] CHANG C (常聪), LI Y G (李有刚), CHEN Y M (陈永明), et al.
Lead electrodeposition in methanesulfonic acid system[J]. Mining
2+
效率下降、能耗增大。并且 Cu 的加入改变了 Pb 2+ and Metallurgical Engineering (矿冶工程), 2020, 6(1): 105-108.
2+
的成核机理,从而使 Pb 的还原电位正移。为得到 [12] YANG S H (杨声海), WU Y Z (吴彦增), SUN Y W (孙彦伟), et al.
Electrochemical study of the anodic reaction during electrodeposition
2+
高纯度 的铅 ,溶液 中 的 Cu zhil 浓度应 控制 在 of lead in the methanesulfonic acid system[J]. Hydrometallurgy of
china (湿法冶金), 2018, 37(5): 356-361.
2 mg/L 以下。 [13] GAD-ALLAH A G, SALIH S A, MOKHTAR A A, et al. Effect of As,
(2)通过对杂质铜净化方法的研究发现,流态 Cu and Sb impurities on performance of Pb-Ca-Sn grids of lead-acid
batteries[J]. Material Science and Engineering Technology, 2013,
化除铜工艺相较于传统搅拌法具有更广阔的工业应 44(10): 832-838.
[14] YU W H, ZHANG P Y, YANG J K, et al. A low-emission strategy to
用潜力,流态化除铜杂质的最优工艺条件为:铅粉 recover lead compound products directly from spent lead-acid battery
粒径区间为 100~150 目,在保证了最大化利用铅粉 paste: Key issue of impurities removal[J]. Journal of Cleaner
Production, 2019, 210: 1534-1544.
的同时解决了流柱中铅粉堵塞的问题;控制较低的 [15] JIAN Y J (翦英军). Behavior and control of impurities in the
electrolysis of lead[J]. Hunan Nonferrous Metals (湖南有色金属),
工艺温度(20 ℃)可以有效应对流柱堵塞;在流速 2001, 17: 13-16.
为 8~10 m/h、填充铅粉柱高 0.6~0.7 cm 的条件下, [16] WEI M (魏民). Electrochemical behaviour and control of impurity
copper in lead electrolysis[J]. Nonferrous Metals (有色金属), 1992,
2+
可以有效处理 Cu 质量浓度<20 mg/L 的电解液。 5(2): 32-39.
[17] JIN F F (金风帆). Frequently asked questions on lead acid battery
EDS 结果表明,净化后的铜包覆铅残渣中表面铜质 failures(Ⅱ)[J]. Auto Application (汽车运用), 2002, (11): 43-44.
量分数为 67.53%。动力学研究表明,铅粉置换铜属 [18] BAN S (班双), JIANG X Y (蒋晓云), YI Y N (易亚男), et al. Study
on copper removal from nickel electrolyte under acidic condition[J].
于一级反应,反应活化能为 9.50 kJ/mol,说明铅粉 Nonferrous Metallurgical Equipment (有色设备), 2021, 35(5): 25-28.
[19] AHMADI M K, GHAFARI M, ATKINSON J D, et al. A copper
置换铜的反应能垒较低,反应较易发生。 removal process for water based upon biosynthesis of yersiniabactin,
(3)通过对实际废铅膏进行除铜效果分析发现, a metal-binding natural product[J]. Chemical Engineerig Journal,
2016, 306: 772-776.
在上述优化的条件下,该除铜工艺可达到 90%以上 [20] BAO H W (包红伟). Experimental study on copper removal by
2+
的去除率,除杂后浸出液中的 Cu 质量浓度基本不 replacement of iron powder with manganese chloride solution[J].
China Steel Focus (冶金管理), 2020, (15): 26-27.
对后续电解过程造成影响。 [21] FU G (付光), LIU J C (刘俊场), QU H T (曲洪涛), et al. Research
status and tendency on purification and impurity removal of zinc sulfate
甲磺酸体系在回收废铅膏方面相较于传统氟硅 solution[J]. Yunnan Metallurgy (云南冶金), 2020, 49(2): 33-37.
[22] YAN M J (闫明江). Production technology and practice of integrated
酸、氟硼酸体系具有一定的竞争力,该研究为工业 recovery of indium from waste slag of zinc smelting[J]. Shanxi
上使用甲磺酸体系进行废铅资源的高值回收提供了 Metallurgy (山西冶金), 2021, 44(2): 117-118.
[23] XIA D (夏栋), JIANG X Y (蒋晓云), WANG C (王冲), et al.
一定的理论依据。但是废铅膏中杂质种类较多,有 Process of copper electrolyte purification[J]. Hydrometallurgy of
China (湿法冶金), 2019, 38(5): 371-374.
关其他杂质的行为及净化还有待进一步探究。 [24] ZHOU P (周萍), LI D M (李冬梅), CHEN Z (陈卓). Mass transfer
process in replacement-column purification device in zinc
参考文献: hydrometallurgy[J]. Transactions of Nonferrous Metals Society of
China (中国有色金属学报: 英文版), 2014, 24(8): 2660-2664.
[1] LI W (李伟), HU Y (胡勇). Research progress on the development [25] RAO M D, MESHRAM A, VERMA H R, et al. Study to enhance
status of power lead-acid batteries and their service life[J]. cementation of impurities from zinc leach liquor by modifying the
Manufacture Information Engineering of China (中国制造业信息 shape and size of zinc dust[J]. Hydrometallurgy, 2020, 195: 105352.
化), 2011, 40(7): 70-72. [26] KHUDR M S, IBRAHIM Y M E, GARFORTH A, et al. On copper
[2] SUN Z, CAO H B, ZHANG X H, et al. Spent lead-acid battery removal from aquatic media using simultaneous and sequential
recycling in China—A review and sustainable analyses on mass flow iron-perlite composites[J]. Journal of Water Process Engineering,
of lead[J]. Waste Management, 2017, 64: 190-201. 2021, 40: 101842.
[3] SUN N Y (孙宁研), QIU H Y (邱海燕), LAN G H (兰贵红), et al. [27] SCHARIFKER B, HILLS G. Theoretical and experimental studies of
2+
Adsorption performance of Pb by magnetic hydroxyapatite multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
modified boron nitride[J]. Fine Chemicals (精细化工), 2022, 39(4): [28] CHENG J (程进). The agglomeration of molybdenum powder
725-733. particles and that of the quantitative methods[J]. China Molybdenum
[4] FERRACIN L C, CHÁCON S, DAVOGLIO R, et al. Lead recovery Industry (中国钼业), 2016, 40(6): 50-53.
from a typical Brazilian sludge of exhausted lead-acid batteries using [29] SUN B (孙备), ZHANG B (张斌), YANG C H (阳春华), et al.
an electrohydrometallurgical process[J]. Hydrometallurgy, 2002, Discussion on modeling and optimal control of nonferrous
65(2): 137-144. metallurgical purification process[J]. Automatica Sinica (自动化学
[5] LI M Y, YANG J K, LIANG S, et al. Review on clean recovery of 报), 2017, 43(6): 880-892.
discarded spent lead-acid battery and trends of recycled products[J]. [30] BAO C J (包崇军), WEI X (魏霞), ZHANG H W (张候文), et al.
Journal of Power Sources, 2019, 436(1): 226853. Analysis on effect of zinc powder adding mode on purify to remove
[6] ANDREWS D, RAYCHAUDHURI A, FRIAS C. Environmentally the impurity in zinc hydrometallurgical process[J]. Mining and
sound technologies for recycling secondary lead[J]. Journal of Power Metallurgy (矿冶), 2009, 18(3): 56-58.
Sources, 2000, 88(1): 124-129. [31] JIN Y H (金洋华), WU S X (吴世学). Kinetics of surface
[7] WU Z H, DREISINGER D B, URCH H, et al. Fundamental study of transpositional coating of copper on iron powder[J]. Materials
lead recovery from cerussite concentrate with methanesulfonic acid Reports (材料导报), 2007, (Z1): 226-229.