Page 142 - 《精细化工》2023年第2期
P. 142

·364·                             精细化工   FINE CHEMICALS                                 第 40 卷

            次时能耗出现较大升高,铅能耗增加至 580 kW·h/t 以                         (MSA)[J]. Hydrometallurgy, 2014, 142: 23-35.
                                                               [8]   JIN B J, DREISINGER D  B. A green electrorefining process for
            上。而净化后的铅能耗较低,约为 550~560 kW·h/t。                        production  of pure lead from  methanesulfonic acid medium[J].
                                                                   Separation and Purification Technology, 2016, 170: 199-207.
                                                               [9]   FENG Q C, WEN S M, WANG Y J, et al. Dissolution kinetics of
            3   结论                                                 cerussite in an alternative leaching reagent for lead[J]. Chemical
                                                                   Papers, 2015, 69(3): 440-447.
                                                               [10]  LANG Q C (郎庆成), WANG Y L (王云立),XIAO X B (肖向彬), et al.
                (1)通过对杂质铜的电化学行为研究发现,Cu                   2+        Study on a new green and high-efficiency purification technology of
                                            2+
                                                       2+
            对电解铅过程中的主要影响为:Cu 优先于 Pb 析                              lead-tin alloy[J]. Recyclable Resources and Circular Economy (再生
                                                                   资源与循环经济), 2019, 12(7): 24-29.
            出,造成电解铅的纯度下降,同时使还原铅的电流                             [11]  CHANG C (常聪), LI Y G (李有刚), CHEN Y M (陈永明), et al.
                                                                   Lead  electrodeposition in methanesulfonic acid system[J]. Mining
                                        2+
            效率下降、能耗增大。并且 Cu 的加入改变了 Pb                    2+        and Metallurgical Engineering (矿冶工程), 2020, 6(1): 105-108.
                                  2+
            的成核机理,从而使 Pb 的还原电位正移。为得到                           [12]  YANG S H (杨声海), WU Y Z (吴彦增), SUN Y W (孙彦伟), et al.
                                                                   Electrochemical study of the anodic reaction during electrodeposition
                                       2+
            高纯度 的铅 ,溶液 中 的 Cu zhil 浓度应 控制 在                        of lead in the methanesulfonic acid system[J]. Hydrometallurgy of
                                                                   china (湿法冶金), 2018, 37(5): 356-361.
            2 mg/L 以下。                                         [13]  GAD-ALLAH A G, SALIH S A, MOKHTAR A A, et al. Effect of As,
                (2)通过对杂质铜净化方法的研究发现,流态                              Cu and Sb impurities on performance of Pb-Ca-Sn grids of lead-acid
                                                                   batteries[J]. Material Science  and Engineering  Technology, 2013,
            化除铜工艺相较于传统搅拌法具有更广阔的工业应                                 44(10): 832-838.
                                                               [14]  YU W H, ZHANG P Y, YANG J K, et al. A low-emission strategy to
            用潜力,流态化除铜杂质的最优工艺条件为:铅粉                                 recover lead compound products directly from spent lead-acid battery
            粒径区间为 100~150 目,在保证了最大化利用铅粉                            paste: Key issue  of impurities  removal[J]. Journal of Cleaner
                                                                   Production, 2019, 210: 1534-1544.
            的同时解决了流柱中铅粉堵塞的问题;控制较低的                             [15]  JIAN  Y J (翦英军). Behavior and control  of impurities in the
                                                                   electrolysis of  lead[J]. Hunan Nonferrous Metals (湖南有色金属),
            工艺温度(20  ℃)可以有效应对流柱堵塞;在流速                              2001, 17: 13-16.
            为 8~10 m/h、填充铅粉柱高 0.6~0.7 cm 的条件下,                 [16]  WEI M (魏民).  Electrochemical behaviour and control of impurity
                                                                   copper in lead electrolysis[J]. Nonferrous Metals (有色金属), 1992,
                            2+
            可以有效处理 Cu 质量浓度<20 mg/L 的电解液。                           5(2): 32-39.
                                                               [17]  JIN F F (金风帆). Frequently asked questions on lead acid battery
            EDS 结果表明,净化后的铜包覆铅残渣中表面铜质                               failures(Ⅱ)[J]. Auto Application (汽车运用), 2002, (11): 43-44.
            量分数为 67.53%。动力学研究表明,铅粉置换铜属                         [18]  BAN S (班双), JIANG X Y (蒋晓云), YI Y N (易亚男), et al. Study
                                                                   on copper removal from nickel electrolyte under acidic condition[J].
            于一级反应,反应活化能为 9.50 kJ/mol,说明铅粉                          Nonferrous Metallurgical Equipment (有色设备), 2021, 35(5): 25-28.
                                                               [19]  AHMADI M K,  GHAFARI M,  ATKINSON J D, et  al. A  copper
            置换铜的反应能垒较低,反应较易发生。                                     removal process for water based upon biosynthesis of yersiniabactin,
                (3)通过对实际废铅膏进行除铜效果分析发现,                             a  metal-binding  natural product[J]. Chemical Engineerig Journal,
                                                                   2016, 306: 772-776.
            在上述优化的条件下,该除铜工艺可达到 90%以上                           [20]  BAO H W (包红伟). Experimental study on copper removal by
                                          2+
            的去除率,除杂后浸出液中的 Cu 质量浓度基本不                               replacement of iron powder with manganese chloride solution[J].
                                                                   China Steel Focus (冶金管理), 2020, (15): 26-27.
            对后续电解过程造成影响。                                       [21]  FU G (付光), LIU J C (刘俊场), QU H T (曲洪涛), et al. Research
                                                                   status and tendency on purification and impurity removal of zinc sulfate
                 甲磺酸体系在回收废铅膏方面相较于传统氟硅                              solution[J]. Yunnan Metallurgy (云南冶金), 2020, 49(2): 33-37.
                                                               [22]  YAN M J (闫明江). Production technology and practice of integrated
            酸、氟硼酸体系具有一定的竞争力,该研究为工业                                 recovery of indium from waste slag of zinc smelting[J]. Shanxi
            上使用甲磺酸体系进行废铅资源的高值回收提供了                                 Metallurgy (山西冶金), 2021, 44(2): 117-118.
                                                               [23]  XIA D (夏栋), JIANG X Y (蒋晓云), WANG C (王冲), et al.
            一定的理论依据。但是废铅膏中杂质种类较多,有                                 Process of copper electrolyte purification[J]. Hydrometallurgy of
                                                                   China (湿法冶金), 2019, 38(5): 371-374.
            关其他杂质的行为及净化还有待进一步探究。                               [24]  ZHOU P (周萍), LI D M (李冬梅), CHEN Z (陈卓). Mass transfer
                                                                   process in replacement-column purification  device in zinc
            参考文献:                                                  hydrometallurgy[J]. Transactions of Nonferrous Metals Society of
                                                                   China (中国有色金属学报:  英文版), 2014, 24(8): 2660-2664.
            [1]   LI W (李伟), HU Y (胡勇). Research progress on the development   [25]  RAO M D, MESHRAM A, VERMA H R, et al. Study to enhance
                 status of power lead-acid batteries and their service life[J].   cementation of impurities from zinc leach liquor by modifying the
                 Manufacture Information Engineering of China (中国制造业信息  shape and size of zinc dust[J]. Hydrometallurgy, 2020, 195: 105352.
                 化), 2011, 40(7): 70-72.                       [26]  KHUDR M S, IBRAHIM Y M E, GARFORTH A, et al. On copper
            [2]   SUN Z,  CAO H  B,  ZHANG X H, et  al.  Spent lead-acid battery   removal from aquatic  media using  simultaneous and  sequential
                 recycling in China—A review and sustainable analyses on mass flow   iron-perlite composites[J]. Journal of Water Process Engineering,
                 of lead[J]. Waste Management, 2017, 64: 190-201.   2021, 40: 101842.
            [3]   SUN N Y (孙宁研), QIU H Y (邱海燕), LAN G H (兰贵红), et al.   [27]  SCHARIFKER B, HILLS G. Theoretical and experimental studies of
                                      2+
                 Adsorption performance of Pb  by magnetic hydroxyapatite   multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
                 modified boron nitride[J]. Fine Chemicals (精细化工), 2022, 39(4):   [28]  CHENG J (程进). The agglomeration  of molybdenum powder
                 725-733.                                          particles and that of the quantitative methods[J]. China Molybdenum
            [4]   FERRACIN L C, CHÁCON S, DAVOGLIO R, et al. Lead recovery   Industry (中国钼业), 2016, 40(6): 50-53.
                 from a typical Brazilian sludge of exhausted lead-acid batteries using   [29]  SUN B (孙备), ZHANG  B (张斌), YANG C  H  (阳春华), et al.
                 an electrohydrometallurgical process[J]. Hydrometallurgy, 2002,   Discussion on modeling and optimal  control of  nonferrous
                 65(2): 137-144.                                   metallurgical purification process[J]. Automatica Sinica  (自动化学
            [5]   LI M Y, YANG J K, LIANG S, et al. Review on clean recovery of   报), 2017, 43(6): 880-892.
                 discarded spent lead-acid battery and trends of recycled products[J].   [30]  BAO C J (包崇军), WEI X (魏霞), ZHANG H W (张候文), et al.
                 Journal of Power Sources, 2019, 436(1): 226853.   Analysis on effect of zinc powder adding mode on purify to remove
            [6]   ANDREWS D, RAYCHAUDHURI A, FRIAS C. Environmentally   the impurity in zinc hydrometallurgical process[J]. Mining and
                 sound technologies for recycling secondary lead[J]. Journal of Power   Metallurgy (矿冶), 2009, 18(3): 56-58.
                 Sources, 2000, 88(1): 124-129.                [31]  JIN Y  H (金洋华), WU S X (吴世学).  Kinetics of surface
            [7]   WU Z H, DREISINGER D B, URCH H, et al. Fundamental study of   transpositional coating of copper on iron powder[J]. Materials
                 lead recovery from cerussite concentrate with methanesulfonic acid   Reports (材料导报), 2007, (Z1): 226-229.
   137   138   139   140   141   142   143   144   145   146   147