Page 49 - 《精细化工》2023年第2期
P. 49
第 2 期 任龙芳,等: 疏水花生壳/聚氨酯复合泡沫的制备与油水分离性能 ·271·
blue[J]. Journal of Hazardous Materials, 2021, 417: 126130. cleanups and recovery[J]. Environmental Science & Technology,
[30] SONG Z W (宋祖伟), LIU Y N (刘亚男), KANG W K (康武魁), et al. 2019, 53(3): 1509-1517.
Study on the preparation of polyurethane foam filled with peanut [38] GAO S W, DONG X L, HUANG J Y, et al. Co-solvent induced
shell[J]. Journal of Qingdao Agricultural University (青岛农业大学学 self-roughness superhydrophobic coatings with self-healing property
报),, 2016, 33(1): 49-51. for versatile oil-water separation[J]. Applied Surface Science, 2018,
[31] ZHANG Q Q, LIU X Q, CHEN W S, et al. Modification of rigid 459: 512-519.
polyurethane foams with the addition of nano-SiO 2 or lignocellulosic [39] GRAF N, YEGEN E, GROSS T, et al. XPS and NEXAFS studies of
biomass[J]. Polymers, 2020, 12(1): 107. aliphatic and aromatic amine species on functionalized surfaces[J].
[32] ZHAO B W, REN L Y, DU Y B, et al. Eco-friendly separation layers Surface Science, 2009, 603(18): 2849-2860.
based on waste peanut shell for gravity-driven water-in-oil emulsion [40] ZHU E B (朱恩波). Preparation and performance of PTFE matrix
separation[J]. Journal of Cleaner Production, 2020, 255(6): 120184. composites reinforced by fibers and powders[D]. Zhenjiang: Jiangsu
[33] WANG X Y, XU S M, TAN Y, et al. Synthesis and characterization University (江苏大学), 2010.
of a porous and hydrophobic cellulose-based composite for efficient [41] DU J Y (杜瑾瑶). Preparation and adsorption properties of polyurethane
and fast oil-water separation[J]. Carbohydrate Polymers, 2016, 140: foam embedded modification by biomass[D]. Xi'an: Shaanxi University
188-194. of Science and Technology (陕西科技大学), 2020.
[34] ZHANG R L, ZHOU Z P, GE W N, et al. Superhydrophobic sponge [42] XIA C B, LI Y B, FEI T, et al. Facile one-pot synthesis of
with the rod-spherical microstructure via palygorskite-catalyzed superhydrophobic reduced graphene oxide-coated polyurethane sponge
hydrolysis and condensation of vinyltriethoxysilane for oil-water at the presence of ethanol for oil-water separation[J]. Chemical
separation[J]. Applied Clay Science, 2020, 199: 105872. Engineering Journal, 2018, 345: 648-658.
[35] RAY S S, PARK Y I, PARK H, et al. Surface innovation to enhance [43] SHEN H F (沈慧芳), PENG W Q (彭文奇), NING L (宁蕾), et al.
anti-droplet and hydrophobic behavior of breathable compressed- Research progress of crystallization in polyurethane[J]. China
polyurethane masks[J]. Environmental Technology & Innovation, Adhesives (中国胶粘剂), 2010, 19(7): 59-63.
2020, 20: 101093. [44] LIU J Y, WANG Z X, LI H Y, et al. Effect of solid state fermentation
[36] CAI Y W, ZHAO Q, QUAN X J, et al. Fluorine-free and hydrophobic of peanut shell on its dye adsorption performance[J]. Bioresource
hexadecyltrimethoxysilane-TiO 2 coated mesh for gravity-driven Technology, 2018, 249(4): 307-314.
oil/water separation[J]. Colloids and Surfaces A: Physicochemical [45] LI C L, SUN Y C, CHENG M, et al. Fabrication and characterization
and Engineering Aspects, 2020, 586: 124189. of a TiO 2/polysiloxane resin composite coating with full-thickness
[37] CHEN C, ZHU X Y, CHEN B L. Durable superhydrophobic/ super-hydrophobicity[J]. Chemical Engineering Journal, 2018, 333:
superoleophilic graphene-based foam for high-efficiency oil spill 361-369.
(上接第 255 页) Metal organic framework derived synthesis of Cobalt Indium
catalysts for the hydrogenation of CO 2 to methanol[J]. ACS
[52] VAN N T T, LOC L C, TRI N, et al. Synthesis, characterisation, Catalysis, 2020, 10(9): 5064-5076.
adsorption ability and activity of Cu,ZnO@UiO-66 in methanol [59] NIU J T, LIU H Y, JIN Y, et al. Comprehensive review of Cu-based
synthesis[J]. International Journal of Nanotechnology, 2015, CO2 hydrogenation to CH 3OH: Insights from experimental work and
12(5/6/7): 405-415. theoretical analysis[J], International Journal of Hydrogen Energy,
[53] YE H C (叶海船). Study on the performance of CO 2 hydrogenation 2022, 47(15): 9183-9200.
to methanol over ZIF-8 derived copper based catalyst[D]. Kuming: [60] TADA S, KAYAMORI S, HONMA T, et al. Design of interfacial
Kunming University of Science and Technology (昆明理工大学), sites between Cu and amorphous ZrO 2 dedicated to CO 2-to-methanol
2020. hydrogenation[J]. ACS Catalysis, 2018, 8: 7809-7819.
[54] ZHAO F G, FAN L L, XU K J, et al. Hierarchical sheet-like [61] GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active
Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO 2 copper-ceria and copper-ceriatitania catalysts for methanol synthesis
hydrogenation to methanol[J]. Journal of CO 2 Utilization, 2019, 33: from CO 2[J]. Science, 2014, 345: 546-550.
222-232. [62] HAN X Y, LI M S, CHANG X, et al. Hollow structured Cu@ZrO 2
[55] YIN Y Z (尹雅芝), HU B (胡兵), LIU G L (刘国亮), et al. derived from Zr-MOF for selective hydrogenation of CO 2 to
Core-shell structure as host for highly selective and stable Pd/ZnO methanol [J]. Journal of Energy Chemistry, 2022, 71: 277-287.
catalysts for hydrogenation of CO 2 to methanol[J]. Acta [63] YE J, JOHNSON J K. Catalytic hydrogenation of CO 2 to methanol in
Physico-Chimica Sinica (物理化学学报), 2019(3): 327-336. a Lewis pair functionalized MOF[J]. Catalysis Science & Technology,
[56] TAN K B, LI Q, HUANG J, et al. Pd supported on MIL-68(In)- 2016, 6(24): 8392-8405.
derived In 2O 3 nanotubes as superior catalysts to boost CO 2 [64] ZHANG M H, LI Q H, GU K, et al. The modified MOF-74 with H 2
hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(22): 13275- dissociation function for CO 2 hydrogenation: A DFT study[J].
13289. Materials Today Communications, 2021, 27: 102419.
[57] ZHANG J Z, AN B, LI Z, et al. Neighboring Zn-Zr sites in a metal- [65] GUTTERD E S, LAZZARINI A, FJERMESTAD T, et al.
organic framework for CO 2 hydrogenation[J]. Journal of the American Hydrogenation of CO 2 to methanol by Pt nanoparticles encapsulated
Chemical Society, 2021, 143(23): 8829-8837. in UiO-67: Deciphering the role of the MOF[J]. Journal of the
[58] PUSTOVARENKO A, DIKHTIARENKO A, BAVYKINA A, et al. American Chemical Society, 2019, 142(2): 999-1009.