Page 49 - 《精细化工》2023年第2期
P. 49

第 2 期                  任龙芳,等:  疏水花生壳/聚氨酯复合泡沫的制备与油水分离性能                                   ·271·


                 blue[J]. Journal of Hazardous Materials, 2021, 417: 126130.   cleanups and recovery[J]. Environmental Science & Technology,
            [30]  SONG Z W (宋祖伟), LIU Y N (刘亚男), KANG W K (康武魁), et al.   2019, 53(3): 1509-1517.
                 Study on the preparation of polyurethane foam filled with peanut   [38]  GAO S W, DONG X L, HUANG J Y,  et al. Co-solvent induced
                 shell[J]. Journal of Qingdao Agricultural University (青岛农业大学学  self-roughness superhydrophobic coatings with self-healing property
                 报),, 2016, 33(1): 49-51.                          for versatile oil-water separation[J]. Applied Surface Science, 2018,
            [31]  ZHANG Q Q, LIU X Q,  CHEN W S,  et al. Modification of rigid   459: 512-519.
                 polyurethane foams with the addition of nano-SiO 2 or lignocellulosic   [39]  GRAF N, YEGEN E, GROSS T, et al. XPS and NEXAFS studies of
                 biomass[J]. Polymers, 2020, 12(1): 107.           aliphatic and aromatic  amine species  on functionalized surfaces[J].
            [32]  ZHAO B W, REN L Y, DU Y B, et al. Eco-friendly separation layers   Surface Science, 2009, 603(18): 2849-2860.
                 based on waste peanut shell for gravity-driven water-in-oil emulsion   [40]  ZHU E B  (朱恩波). Preparation and  performance of PTFE  matrix
                 separation[J]. Journal of Cleaner Production, 2020, 255(6): 120184.   composites reinforced by fibers and powders[D]. Zhenjiang: Jiangsu
            [33]  WANG X Y, XU S M, TAN Y, et al. Synthesis and characterization   University (江苏大学), 2010.
                 of a porous and hydrophobic cellulose-based composite for efficient   [41]  DU J Y (杜瑾瑶). Preparation and adsorption properties of polyurethane
                 and fast oil-water separation[J]. Carbohydrate Polymers, 2016, 140:   foam embedded modification by biomass[D]. Xi'an: Shaanxi University
                 188-194.                                          of Science and Technology (陕西科技大学), 2020.
            [34]  ZHANG R L, ZHOU Z P, GE W N, et al. Superhydrophobic sponge   [42]  XIA C B, LI  Y  B, FEI T,  et al.  Facile one-pot synthesis  of
                 with the rod-spherical  microstructure  via  palygorskite-catalyzed   superhydrophobic reduced graphene oxide-coated polyurethane sponge
                 hydrolysis and condensation  of vinyltriethoxysilane for oil-water   at the presence of ethanol for  oil-water separation[J]. Chemical
                 separation[J]. Applied Clay Science, 2020, 199: 105872.   Engineering Journal, 2018, 345: 648-658.
            [35]  RAY S S, PARK Y I, PARK H, et al. Surface innovation to enhance   [43]  SHEN H F (沈慧芳), PENG W Q (彭文奇), NING L (宁蕾), et al.
                 anti-droplet and hydrophobic behavior of breathable compressed-   Research progress of crystallization in polyurethane[J]. China
                 polyurethane masks[J]. Environmental Technology & Innovation,   Adhesives (中国胶粘剂), 2010, 19(7): 59-63.
                 2020, 20: 101093.                             [44]  LIU J Y, WANG Z X, LI H Y, et al. Effect of solid state fermentation
            [36]  CAI Y W, ZHAO Q, QUAN X J, et al. Fluorine-free and hydrophobic   of peanut  shell on its dye adsorption performance[J]. Bioresource
                 hexadecyltrimethoxysilane-TiO 2 coated  mesh for gravity-driven   Technology, 2018, 249(4): 307-314.
                 oil/water separation[J]. Colloids and Surfaces A: Physicochemical   [45]  LI C L, SUN Y C, CHENG M, et al. Fabrication and characterization
                 and Engineering Aspects, 2020, 586: 124189.       of a  TiO 2/polysiloxane resin composite  coating with full-thickness
            [37]  CHEN  C, ZHU  X  Y, CHEN B L. Durable superhydrophobic/   super-hydrophobicity[J]. Chemical Engineering Journal, 2018, 333:
                 superoleophilic graphene-based foam  for high-efficiency oil spill   361-369.




            (上接第 255 页)                                            Metal organic framework derived  synthesis  of Cobalt Indium
                                                                   catalysts  for the hydrogenation of CO 2 to methanol[J]. ACS
            [52]  VAN N T T, LOC L C, TRI N,  et al. Synthesis, characterisation,   Catalysis, 2020, 10(9): 5064-5076.
                 adsorption ability and activity of Cu,ZnO@UiO-66  in methanol   [59]  NIU J T, LIU H Y, JIN Y, et al. Comprehensive review of Cu-based
                 synthesis[J]. International Journal  of Nanotechnology, 2015,   CO2 hydrogenation to CH 3OH: Insights from experimental work and
                 12(5/6/7): 405-415.                               theoretical analysis[J], International Journal of Hydrogen Energy,
            [53]  YE H C (叶海船). Study on the performance of CO 2 hydrogenation   2022, 47(15): 9183-9200.
                 to methanol over ZIF-8 derived copper based catalyst[D]. Kuming:   [60]  TADA S, KAYAMORI S, HONMA T,  et al. Design of interfacial
                 Kunming University of Science and  Technology (昆明理工大学),   sites between Cu and amorphous ZrO 2 dedicated to CO 2-to-methanol
                 2020.                                             hydrogenation[J]. ACS Catalysis, 2018, 8: 7809-7819.
            [54]  ZHAO F G, FAN L  L, XU K J,  et al. Hierarchical  sheet-like   [61]  GRACIANI J, MUDIYANSELAGE  K, XU F,  et al. Highly  active
                 Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO 2   copper-ceria and copper-ceriatitania catalysts for methanol synthesis
                 hydrogenation to methanol[J]. Journal of CO 2 Utilization, 2019, 33:   from CO 2[J]. Science, 2014, 345: 546-550.
                 222-232.                                      [62]  HAN X Y, LI M S, CHANG X, et al. Hollow structured Cu@ZrO 2
            [55]  YIN Y Z (尹雅芝), HU B (胡兵), LIU G L (刘国亮),  et al.   derived from Zr-MOF for selective hydrogenation  of CO 2 to
                 Core-shell structure as host for highly selective and stable Pd/ZnO   methanol [J]. Journal of Energy Chemistry, 2022, 71: 277-287.
                 catalysts for hydrogenation of  CO 2 to methanol[J]. Acta   [63]  YE J, JOHNSON J K. Catalytic hydrogenation of CO 2 to methanol in
                 Physico-Chimica Sinica (物理化学学报), 2019(3): 327-336.   a Lewis pair functionalized MOF[J]. Catalysis Science & Technology,
            [56]  TAN K  B, LI Q,  HUANG J,  et al. Pd supported on  MIL-68(In)-   2016, 6(24): 8392-8405.
                 derived In 2O 3 nanotubes as superior catalysts to boost CO 2   [64]  ZHANG M H, LI Q H, GU K, et al. The modified MOF-74 with H 2
                 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(22): 13275-   dissociation function for CO 2 hydrogenation: A DFT study[J].
                 13289.                                            Materials Today Communications, 2021, 27: 102419.
            [57]  ZHANG J Z, AN B, LI Z, et al. Neighboring Zn-Zr sites in a metal-   [65]  GUTTERD  E S, LAZZARINI A, FJERMESTAD  T,  et al.
                 organic framework for CO 2 hydrogenation[J]. Journal of the American   Hydrogenation of CO 2 to methanol by Pt nanoparticles encapsulated
                 Chemical Society, 2021, 143(23): 8829-8837.       in UiO-67: Deciphering the role of the MOF[J]. Journal of the
            [58]  PUSTOVARENKO A, DIKHTIARENKO A, BAVYKINA A, et al.   American Chemical Society, 2019, 142(2): 999-1009.
   44   45   46   47   48   49   50   51   52   53   54