Page 48 - 《精细化工》2023年第2期
P. 48
·270· 精细化工 FINE CHEMICALS 第 40 卷
通过图 13 发现,与 PUF 相比,H-PSP-PUF-10 [11] XU Y, WANG G, ZHU L J, et al. Multifunctional superhydrophobic
在 15 次循环使用后仍具有较高的抗压缩能力,回弹 adsorbents by mixed-dimensional particles assembly for polymorphic
and highly efficient oil-water separation[J]. Journal of Hazardous
性能优异,这为 H-PSP-PUF-10 在实际生活中的应 Materials, 2021, 407: 124374.
用提供了基础。 [12] SONG B T, ZHU J, FAN H M. Magnetic fibrous sorbent for remote
and efficient oil adsorption[J]. Marine Pollution Bulletin, 2017,
3 结论 120(1/2): 159-164.
[13] JI H D, XIE W B, LIU W, et al. Sorption of dispersed petroleum
hydrocarbons by activated charcoals: Effects of oil dispersants[J].
采用 HDTMS 对花生壳粉末进行了疏水改性, Environmental Pollution, 2020, 256: 113416.
制备得到疏水改性花生壳粉末(H-PSP)。以聚氨酯泡 [14] QIU S M, LI Y F, LI G R, et al. Robust superhydrophobic sepiolite-
沫为基体,将 H-PSP 负载在聚氨酯泡沫上,制备了 coated polyurethane sponge for highly efficient and recyclable oil
absorption[J]. ACS Sustainable Chemistry & Engineering, 2019,
聚氨酯泡沫复合材料(H-PSP-PUF-n)。探究了 H-PSP 7(5): 5560-5567.
的负载量对 H-PSP-PUF-n 润湿性和力学性能的影 [15] ZHANG H M, ZHAO T, CHEN Y, et al. A sustainable nanocellulose-
响。当 H-PSP 负载量为 10%时,H-PSP-PUF-10 的 based superabsorbent from kapok fiber with advanced oil absorption
and recyclability[J]. Carbohydrate Polymers, 2022, 278: 118948.
静态水接触角可达 142.4°,较 PUF 提高了 50.4°;断
[16] WANG Z Q, WANG D F, LI Z G, et al. Metaplexis japonica seed hair
裂伸长率达 200%以上,断裂强度为 0.17 MPa。 fiber: A hydrophobic natural fiber with robust oil-water separation
H-PSP-PUF-10 对石油醚、煤油、二甲苯、环己烷的 properties[J]. Cellulose, 2020, 27(5): 2427-2435.
[17] MA L B, LUO X G, CAI N, et al. Facile fabrication of hierarchical
吸油倍率在 7~9 g/g,经 15 次吸附-脱附循环后,
porous resins via high internal phase emulsion and polymeric
H-PSP-PUF-10 对油品的吸附效果仍能保持首次吸 porogen[J]. Applied Surface Science, 2014, 305: 186-193.
油倍率的 85%以上,具有良好的循环利用性,有望 [18] ZHU Q, CHU Y, WANG Z K, et al. Robust superhydrophobic
polyurethane sponge as a highly reusable oil-absorption material[J].
助力于实际生活中含油污水的治理。
Journal of Materials Chemistry A, 2013, 1(17): 5386-5393.
[19] YANG S H (杨双华), SHAO G S (邵高耸), LU L G (卢林刚).
参考文献:
Progress and prospect of common oil adsorption materials[J]. Applied
[1] SUN J W, BI H C, JIA H Y, et al. A low cost paper tissue-based Chemical Industry (应用化工), 2019, 48(4): 926-931, 937.
PDMS/SiO 2 composite for both high efficient oil absorption and [20] FAN L Y, WANG R, ZHANG Q, et al. In situ self-foaming preparation
water-in-oil emulsion separation[J]. Journal of Cleaner Production, of hydrophobic polyurethane foams for oil/water separation[J]. New
2020, 244: 118814. Journal of Chemistry, 2021, 45(31): 13902-13908.
[2] GUPTA S, TAI N H. Carbon materials as oil sorbents: A review on [21] WU F, PICKETT K, PANCHAL A, et al. Superhydrophobic polyurethane
the synthesis and performance[J]. Journal of Materials Chemistry A, foam coated with polysiloxane-modified clay nanotubes for efficient
2016, 4(5): 1550-1565. and recyclable oil absorption[J]. ACS Applied Materials & Interfaces,
[3] XU C B (徐从斌), MA L K (马乐宽), ZHAO Y (赵越), et al. 2019, 11(28): 25445-25456.
Performance of a modified polyurethane foam on oil-water separation[J]. [22] SONG L, ZHANG X F, WANG Z G, et al. Metal-ion induced surface
Research of Environmental Sciences (环境科学研究), 2016, 29(7): modification for durable hydrophobic wood[J]. Advanced Materials
1083-1088. Interfaces, 2020, 7(22): 2001166.
[4] ZHANG L, LI H Q, LAI X J, et al. Thiolated graphene-based [23] WANG W (王伟), PAN H F (潘海峰), LU Y S (陆愈实), et al.
superhydrophobic sponges for oil-water separation[J]. Chemical Fabrication of oil absorptive polyurethane foam and study of its
Engineering Journal, 2017, 316: 736-743. properties for oil/water separation[J]. Journal of Wuhan University
[5] CHEN P (陈平), WANG C (王晨), LIU M W (刘明伟), et al. Research (武汉大学学报), 2017, 50(5): 727-732.
progress of oily wastewater treatment technology[J]. Contemporary [24] SHUAI Q, YANG X T, LUO Y M, et al. A superhydrophobic poly
Chemical Industry (当代化工), 2016, 45(6): 1286-1288. (dimethylsiloxane)-TiO 2 coated polyurethane sponge for selective
[6] SOCOLOFSKY S A, GROS J, NORTH E, et al. The treatment of absorption of oil from water[J]. Materials Chemistry and Physics,
biodegradation in models of sub-surface oil spills: A review and 2015, 162: 94-99.
sensitivity study[J]. Marine Pollution Bulletin, 2019, 143: 204-219. [25] ZHANG X M (张雪梅), WANG H (王航), HAO B B (郝彬彬), et al.
[7] EL-SAMAK A A, PONNAMMA D, HASSAN M K, et al. Designing Study on preparation and properties of magnetic superhydrophobic
flexible and porous fibrous membranes for oil water separation—A polyurethane sponges[J]. Contemporary Chemical Industry (当代化
review of recent developments[J]. Polymer Reviews, 2020, 60(4): 工), 2019, 48(8): 1714-1717.
671-716. [26] ZHANG T, KONG L Y, DAI Y T, et al. Enhanced oils and organic
[8] YANG R (杨瑞), ZHANG F (张翻). Development of oily wastewater solvents absorption by polyurethane foams composites modified with
treatment technology[J]. Contemporary Chemical Industry (当代化 MnO 2 nanowires[J]. Chemical Engineering Journal, 2017, 309: 7-14.
工), 2018, 47(8): 1695-1697, 1701. [27] YANG J S, CHO S M, KIM B K, et al. Structured polyurethanes for
[9] LU H (卢浩), LIU Y Q (刘懿谦), DAI P Y (代品一), et al. Process oil uptake[J]. Journal of Applied Polymer Science, 2005, 98(5):
intensification technologies for oil-water separation[J]. Chemical 2080-2087.
Industry and Engineering Progress (化工进展), 2020, 39(12): 4954- [28] XU C A, LU M G, WU K, et al. Effects of polyether and polyester
4962. polyols on the hydrophobicity and surface properties of polyurethane/
[10] JIA H B (贾洪柏), QU L N (曲丽娜), WANG Q Y (王秋玉). Selection polysiloxane elastomers[J]. Macromolecular Research, 2020, 28(11):
of crude oil-degrading filamentous fungi and their degradation properties 1032-1039.
[J]. Research of Environmental Sciences (环境科学研究), 2013, [29] REN L F, TANG Z, DU J Y, et al. Recyclable polyurethane foam
26(6): 678-683. loaded with carboxymethyl chitosan for adsorption of methylene