Page 92 - 《精细化工》2023年第2期
P. 92

·314·                             精细化工   FINE CHEMICALS                                 第 40 卷

            Cu 2 S 价带上富集的空穴则被甲醇牺牲剂所消耗,                         Cu 2 S/缺陷型 UiO-66 异质结的构建提高了 UiO-66
            这就促进了光生电子-空穴对的分离。因此,50%                            的光催化活性。






















                           图 17  50% Cu 2 S/缺陷型 UiO-66 复合光催化剂在可见光照射下的光催化机理示意图
             Fig. 17    Photocatalytic mechanism diagram of 50% Cu 2 S/ defective UiO-66 composite photocatalyst under visible light irradiation

                                                                   A review[J]. Environmental Science  and Pollution Research, 2019,
            3   结论                                                 26(11): 10515-10528.
                                                               [5]   FAN W, ZHOU  Z, WANG W T,  et al. Environmentally friendly
                 以雪花状 Cu 2 S 为基材,以三氟乙酸为晶体调节                        approach for advanced treatment of municipal secondary effluent by
                                                                   integration of micro-nano bubbles and photocatalysis[J].  Journal of
            剂对 UiO-66 进行缺陷调控,采用溶剂热法成功构筑                            Cleaner Production, 2019, 237: 117828.
            具有 p-n 型异质结的 Cu 2 S/缺陷型 UiO-66 复合光催                [6]   PHANG S J, WONG V L, TAN  L  L,  et al. Recent advances in
                                                                   homojunction-based photocatalysis for sustainable environmental
            化剂。缺陷型 UiO-66 均匀包覆在 Cu 2 S 的表面上,                       remediation and clean energy generation[J]. Applied Materials Today,
            不仅有效解决了缺陷型 UiO-66 易团聚的问题,还提                            2020, 20: 100741.
                                                               [7]   ZHU H J, CHEN Z H, HU Y Y, et al. A novel immobilized Z-scheme
            高了其光催化性能。光吸收性能分析和电化学测试                                 P3HT/α-Fe 2O 3 photocatalyst array: Study on the excellent photocatalytic
            分析结果表明,Cu 2 S/缺陷型 UiO-66 复合光催化剂                        performance and photocatalytic mechanism[J]. Journal of Hazardous
                                                                   Materials, 2020, 389: 122119.
            具有很强的吸光能力。此外,在 Cu 2 S 和缺陷型                         [8]   MA X C, WU X, WANG H D, et al. A Janus MoSSe monolayer: A
            UiO-66 的界面处建立了 p-n 型异质结,促进了光生                          potential wide solar-spectrum water-splitting photocatalyst with a
                                                                   low carrier recombination rate[J]. Journal of Materials Chemistry A,
            电子-空穴对的有效分离。对 Cr(Ⅵ)的光催化还原实
                                                                   2018, 6(5): 2295-2301.
            验结果表明,20 mg 的 50% Cu 2 S/缺陷型 UiO-66 复              [9]   WANG J J, LIU  L M, CHEN  C L,  et al. Engineering effective
                                                                   structural defects of metal-organic frameworks to enhance their
            合光催化剂对 50 mL 质量浓度为 20 mg/L 的 K 2 Cr 2 O 7
                                                                   catalytic performances[J]. Journal of Materials Chemistry A, 2020, 8:
            溶液的还原率高达 98.92%,且循环 5 次后 Cr(Ⅵ)的                        4464-4472.
            还原率仍可达 96.27%,对重金属离子的去除和再利                         [10]  DISSEGNA S, EPP K, HEINZ W R, et al. Metal-organic frameworks:
                                                                   Defective  metal-organic frameworks[J]. Advanced Materials, 2018,
            用表现出优异的结构和性能稳定性。因此,Cu 2 S/                             30: 1870280.
            缺陷型 UiO-66 光催化体系为去除水体环境中重金                         [11]  BENNETT T D, CHEETHAM A  K,  FUCHS A H,  et al. Interplay
                                                                   between defects, disorder and flexibility in metal-organic frameworks[J].
            属离子提供了一个有前景的策略,为金属有机骨架材                                Nature Chemistry, 2017, 9: 11-16.
            料基高性能光催化剂的创新设计提供了理论依据。                             [12]  WANG Y T, PENG C S, JIANG T,  et al. Research progress  of
                                                                   defect-engineered  UiO-66(Zr) MOFs for  photocatalytic hydrogen
            参考文献:                                                  production[J]. Frontiers in Energy, 2021, 15: 656-666.
                                                               [13]  SHAN B H, MCLNTYRE S M,  ARMSTRONG M R,  et al.
            [1]   VO T S, HOSSAIN M M, JEONG H M, et al. Heavy metal removal   Investigation  of missing-cluster defects in UiO-66 and  ferrocene
                 applications  using adsorptive membranes[J]. Nano Convergence,   deposition into defect-induced cavities[J]. Industrial & Engineering
                 2020, 7(1): 36.                                   Chemistry Research, 2018, 57(42): 14233-14241.
            [2]   QIN H Q, HU T J, ZHAI Y B, et al. The improved methods of heavy   [14]  ZHANG L P, JARONIEC  M.  Toward designing semiconductor-
                 metals removal by biosorbents: A review[J]. Environmental Pollution,   semiconductor heterojunctions for photocatalytic applications[J].
                 2019, 258:113777.                                 Applied Surface Science, 2018, 430: 2-17.
            [3]   ZHANG H L, CARRILLO-NAVARRETE F, LOPEZ-MESAS M, et   [15]  ZHU  L J, LUO J  M, DONG G H, et al. Enhanced photocatalytic
                 al. Use of chemically treated human hair wastes for the removal of   degradation of organic contaminants over a CuO/g-C 3N 4  p-n
                 heavy metal ions from water[J]. Water, 2020, 12(5): 1263.   heterojunction under visible light irradiation[J]. RSC  Advances,
            [4]   TAHIR M  B, KIRAN  H, IQBAL  T.  The detoxification of heavy   2021, 11(53): 33373-33379.
                 metals from aqueous environment using nano-photocatalysis approach:   [16]  FU Y H, WU J Y, DU R F, et al. Temperature modulation of defects
   87   88   89   90   91   92   93   94   95   96   97