Page 92 - 《精细化工》2023年第2期
P. 92
·314· 精细化工 FINE CHEMICALS 第 40 卷
Cu 2 S 价带上富集的空穴则被甲醇牺牲剂所消耗, Cu 2 S/缺陷型 UiO-66 异质结的构建提高了 UiO-66
这就促进了光生电子-空穴对的分离。因此,50% 的光催化活性。
图 17 50% Cu 2 S/缺陷型 UiO-66 复合光催化剂在可见光照射下的光催化机理示意图
Fig. 17 Photocatalytic mechanism diagram of 50% Cu 2 S/ defective UiO-66 composite photocatalyst under visible light irradiation
A review[J]. Environmental Science and Pollution Research, 2019,
3 结论 26(11): 10515-10528.
[5] FAN W, ZHOU Z, WANG W T, et al. Environmentally friendly
以雪花状 Cu 2 S 为基材,以三氟乙酸为晶体调节 approach for advanced treatment of municipal secondary effluent by
integration of micro-nano bubbles and photocatalysis[J]. Journal of
剂对 UiO-66 进行缺陷调控,采用溶剂热法成功构筑 Cleaner Production, 2019, 237: 117828.
具有 p-n 型异质结的 Cu 2 S/缺陷型 UiO-66 复合光催 [6] PHANG S J, WONG V L, TAN L L, et al. Recent advances in
homojunction-based photocatalysis for sustainable environmental
化剂。缺陷型 UiO-66 均匀包覆在 Cu 2 S 的表面上, remediation and clean energy generation[J]. Applied Materials Today,
不仅有效解决了缺陷型 UiO-66 易团聚的问题,还提 2020, 20: 100741.
[7] ZHU H J, CHEN Z H, HU Y Y, et al. A novel immobilized Z-scheme
高了其光催化性能。光吸收性能分析和电化学测试 P3HT/α-Fe 2O 3 photocatalyst array: Study on the excellent photocatalytic
分析结果表明,Cu 2 S/缺陷型 UiO-66 复合光催化剂 performance and photocatalytic mechanism[J]. Journal of Hazardous
Materials, 2020, 389: 122119.
具有很强的吸光能力。此外,在 Cu 2 S 和缺陷型 [8] MA X C, WU X, WANG H D, et al. A Janus MoSSe monolayer: A
UiO-66 的界面处建立了 p-n 型异质结,促进了光生 potential wide solar-spectrum water-splitting photocatalyst with a
low carrier recombination rate[J]. Journal of Materials Chemistry A,
电子-空穴对的有效分离。对 Cr(Ⅵ)的光催化还原实
2018, 6(5): 2295-2301.
验结果表明,20 mg 的 50% Cu 2 S/缺陷型 UiO-66 复 [9] WANG J J, LIU L M, CHEN C L, et al. Engineering effective
structural defects of metal-organic frameworks to enhance their
合光催化剂对 50 mL 质量浓度为 20 mg/L 的 K 2 Cr 2 O 7
catalytic performances[J]. Journal of Materials Chemistry A, 2020, 8:
溶液的还原率高达 98.92%,且循环 5 次后 Cr(Ⅵ)的 4464-4472.
还原率仍可达 96.27%,对重金属离子的去除和再利 [10] DISSEGNA S, EPP K, HEINZ W R, et al. Metal-organic frameworks:
Defective metal-organic frameworks[J]. Advanced Materials, 2018,
用表现出优异的结构和性能稳定性。因此,Cu 2 S/ 30: 1870280.
缺陷型 UiO-66 光催化体系为去除水体环境中重金 [11] BENNETT T D, CHEETHAM A K, FUCHS A H, et al. Interplay
between defects, disorder and flexibility in metal-organic frameworks[J].
属离子提供了一个有前景的策略,为金属有机骨架材 Nature Chemistry, 2017, 9: 11-16.
料基高性能光催化剂的创新设计提供了理论依据。 [12] WANG Y T, PENG C S, JIANG T, et al. Research progress of
defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen
参考文献: production[J]. Frontiers in Energy, 2021, 15: 656-666.
[13] SHAN B H, MCLNTYRE S M, ARMSTRONG M R, et al.
[1] VO T S, HOSSAIN M M, JEONG H M, et al. Heavy metal removal Investigation of missing-cluster defects in UiO-66 and ferrocene
applications using adsorptive membranes[J]. Nano Convergence, deposition into defect-induced cavities[J]. Industrial & Engineering
2020, 7(1): 36. Chemistry Research, 2018, 57(42): 14233-14241.
[2] QIN H Q, HU T J, ZHAI Y B, et al. The improved methods of heavy [14] ZHANG L P, JARONIEC M. Toward designing semiconductor-
metals removal by biosorbents: A review[J]. Environmental Pollution, semiconductor heterojunctions for photocatalytic applications[J].
2019, 258:113777. Applied Surface Science, 2018, 430: 2-17.
[3] ZHANG H L, CARRILLO-NAVARRETE F, LOPEZ-MESAS M, et [15] ZHU L J, LUO J M, DONG G H, et al. Enhanced photocatalytic
al. Use of chemically treated human hair wastes for the removal of degradation of organic contaminants over a CuO/g-C 3N 4 p-n
heavy metal ions from water[J]. Water, 2020, 12(5): 1263. heterojunction under visible light irradiation[J]. RSC Advances,
[4] TAHIR M B, KIRAN H, IQBAL T. The detoxification of heavy 2021, 11(53): 33373-33379.
metals from aqueous environment using nano-photocatalysis approach: [16] FU Y H, WU J Y, DU R F, et al. Temperature modulation of defects