Page 93 - 《精细化工》2023年第2期
P. 93
第 2 期 王少婷,等: 雪花状 Cu 2 S/缺陷型 UiO-66 p-n 异质结用于光催化还原 Cr(Ⅵ) ·315·
in NH 2-UiO-66(Zr) for photocatalytic CO 2 reduction[J]. RSC Advances, 691.
2019, 9(65): 37733-37738. [33] LIU Y, DENG Y, SUN Z, et al. Hierarchical Cu 2S microsponges
[17] ZHANG Z G, WANG S Q, BAO M J, et al. Construction of ternary constructed from nanosheets for efficient photocatalysis[J]. Small,
Ag/AgCl/NH 2-UiO-66 hybridized heterojunction for effective 2013, 9(16): 2702-2708.
photocatalytic hexavalent chromium reduction[J]. Journal of Colloid [34] KUO C H, CHU Y T, SONG Y F, et al. Cu 2O nanocrystal-templated
and Interface Science, 2019, 555: 342-351. growth of Cu 2S nanocages with encapsulated Au nanoparticles and
[18] DU Q Z, WU P, SUN Y Y, et al. Selective photodegradation of in-situ transmission X-ray microscopy study[J]. Advanced Functional
tetracycline by molecularly imprinted ZnO@NH 2-UiO-66 composites[J]. Materials, 2011, 21(4): 792-797.
Chemical Engineering Journal, 2020, 390:124614. [35] CAO J, YANG Z H, XIONG W P, et al. One-step synthesis of
[19] SU Y, ZHANG Z, LIU H, et al. Cd 0.2Zn 0.8S@UiO-66-NH 2 nanocomposites Co-doped UiO-66 nanoparticle with enhanced removal efficiency of
as efficient and stable visible-light-driven photocatalyst for H 2 tetracycline: Simultaneous adsorption and photocatalysis[J].
evolution and CO 2 reduction[J]. Applied Catalysis B: Environmental, Chemical Engineering Journal, 2018, 353: 126-137.
2017, 200: 448-457. [36] YUE Y, ZHANG P, WANG W, et al. Enhanced dark adsorption and
[20] WANG J L, YUAN M, LI C S, et al. One-step construction of visible-light-driven photocatalytic properties of narrower-band-gap
polyimide/NH 2-UiO-66 heterojunction for enhanced photocatalytic Cu 2S decorated Cu 2O nanocomposites for efficient removal of
degradation of sulfonamides[J]. Journal of Colloid and Interface organic pollutants[J]. Journal of Hazardous Materials, 2020, 384:
Science, 2022, 612(15): 536-549. 121302.
[21] LI C X, DING G X, LIU X T, et al. Photocatalysis over [37] WANG C, LIU L, LIU X J, et al. Highly-sensitive
NH 2-UiO-66/CoFe 2O 4/CdIn 2S 4 double p-n junction: Significantly electrochemiluminescence biosensor for NT-proBNP using
promoting photocatalytic performance by double internal electric MoS 2@Cu 2S as signal-enhancer and multinary nanocrystals loaded
fields[J]. Chemical Engineering Journal, 2022, 435(1): 134740. in mesoporous UiO-66-NH 2 as novel luminophore[J]. Sensors and
[22] LIU Y Q, ZHOU Y, TANG Q J, et al. A direct Z-scheme Bi 2WO 6/ Actuators B: Chemical, 2020, 307: 127619.
NH 2-UiO-66 nanocomposite as an efficient visible-light-driven [38] LIU Y, YANY Z H, SONG P P, et al. Facile synthesis of Bi 2MoO 6/
photocatalyst for NO removal[J]. RSC Advances, 2020, 10: 1757- ZnSnO 3 heterojunction with enhanced visible light photocatalytic
1768. degradation of methylene blue[J]. Applied Surface Science, 2018,
[23] ZHANG Y, YANG X, WANG Y, et al. Insight into L-cysteine- 430: 561-570.
assisted growth of Cu 2S nanoparticles on exfoliated MoS 2 nanosheets [39] MA Y L, ZHANG J, WANG Y, et al. Concerted catalytic and
for effective photoreduction removal of Cr(Ⅵ)[J]. Applied Surface photocatalytic degradation of organic pollutants over CuS/g-C 3N 4
Science, 2020, 518: 146191. catalysts under light and dark conditions[J]. Journal of Advanced
[24] ZHANG X, GUO Y, TIAN J, et al. Controllable growth of MoS 2 Research, 2019, 16(1): 135-143.
nanosheets on novel Cu 2S snowflakes with high photocatalytic [40] ZHAO H, YANG X, XU R, et al. CdS/NH 2-UiO-66 hybrid
activity[J]. Applied Catalysis B: Environmental, 2018, 232: 355-364. membrane reactors for the efficient photocatalytic conversion of
[25] LI X, DAI K, PAN C, et al. Diethylenetriamine-functionalized CdS CO 2[J]. Journal of Materials Chemistry A, 2018, 6(41): 20152- 20160.
nanoparticles decorated on Cu 2S snowflake microparticles for [41] BRAHMI H, NEUPANE R, XIE L, et al. Observation of a low
photocatalytic hydrogen production[J]. ACS Applied Nano Materials, temperature n-p transition in individual titania nanotubes[J].
2020, 3(11): 11517-11526. Nanoscale, 2018, 10: 3863-3870.
[26] JIN Z, WANG X, WANG Y, et al. Snowflake-like Cu 2S coated with [42] JIANG D, WANG T Y, XU Q, et al. Perovskite oxide ultrathin
NiAl-LDH forms a p-n heterojunction for efficient photocatalytic nanosheets/g-C 3N 4 2D-2D heterojunction photocatalysts with
hydrogen evolution[J]. ACS Applied Energy Materials, 2021, 4(12): significantly enhanced photocatalytic activity towards the photodegradation
14220-14231. of tetracycline[J]. Applied Catalysis B: Environmental, 2017, 201:
[27] YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption 617-628.
and visible-light-driven photocatalytic properties of narrower- [43] MANDAL P, SHOW B, AHMED S T, et al. Visible-light active
band-gap Cu 2S decorated Cu 2O nanocomposites for efficient removal electrochemically deposited tin selenide thin films: Synthesis,
of organic pollutants[J]. Journal of Hazardous Materials, 2019, 384: characterization and photocatalytic activity[J]. Journal of Materials
121302. Science Materials in Electronics, 2020, 31: 4708-4718.
[28] LQBAL S, BAHADUR A, ANWER S, et al. Shape and phase- [44] WENG B, QI M Y, HAN C, et al. Photocorrosion inhibition of
controlled synthesis of specially designed 2D morphologies of semiconductor-based photocatalysts: Basic principle, current
L-cysteine surface capped covellite (CuS) and chalcocite (Cu 2S) with development, and future perspective[J]. ACS Catalysis, 2019, 9(5):
excellent photocatalytic properties in the visible spectrum[J]. Applied 4642-4687.
Surface Science, 2020, 526(1): 146691. [45] SHEN Q Q, WANG Y, XUE J B, et al. The dual effects of RGO films
[29] LI H P, LIU J Y, HOU W G , et al. Synthesis and characterization of in TiO 2/CdSe heterojunction: Enhancing photocatalytic activity and
g-C 3N 4/Bi 2MoO 6 heterojunctions with enhanced visible light improving photocorrosion resistance[J]. Applied Surface Science,
photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014, 2019, 481(1): 1515-1523.
160: 89-97. [46] MA X L, LI H, LIU T Y, et al. Comparison of photocatalytic
[30] JIN Z, WANG X, WANG Y, et al. Snowflake-like Cu 2S coated with reaction-induced selective corrosion with photocorrosion: Impact on
NiAl-LDH forms a p-n heterojunction for efficient photocatalytic morphology and stability of Ag-ZnO[J]. Applied Catalysis B:
hydrogen evolution[J]. ACS Applied Energy Materials, 2021, 4(12): Environmental, 2017, 201: 348-358.
14220-14231. [47] XIE G Y, WANG H, ZHOU Y Y, et al. Simultaneous remediation of
[31] LI X, DAI K, PAN C, et al. Diethylenetriamine-functionalized CdS methylene blue and Cr(Ⅵ) by mesoporous BiVO 4 photocatalyst
nanoparticles decorated on Cu 2S snowflake microparticles for under visible-light illumination[J]. Journal of the Taiwan Institute of
photocatalytic hydrogen production[J]. ACS Applied Nano Materials, Chemical Engineers, 2020, 112: 357-365.
2020, 3(11): 11517-11526. [48] HUO Y, YANG Y, DAI K, et al. Construction of 2D/2D porous
[32] MOUSAVI-KAMAZANI M, SALEHI Z, MOTEVALLI K. graphitic C 3N 4/SnS 2 composite as a direct Z-scheme system for
Enhancement of quantum dot-sensitized solar cells performance efficient visible photocatalytic activity[J]. Applied Surface Science,
using CuInS 2-Cu 2S nanocomposite synthesized by a green method[J]. 2019, 481: 1260-1269.
Applied Physics A-Materials Science & Processing, 2017, 123(11): (下转第 397 页)