Page 93 - 《精细化工》2023年第2期
P. 93

第 2 期              王少婷,等:  雪花状 Cu 2 S/缺陷型 UiO-66 p-n 异质结用于光催化还原 Cr(Ⅵ)                    ·315·


                 in NH 2-UiO-66(Zr) for photocatalytic CO 2 reduction[J]. RSC Advances,   691.
                 2019, 9(65): 37733-37738.                     [33]  LIU Y,  DENG Y,  SUN  Z,  et al. Hierarchical Cu 2S microsponges
            [17]  ZHANG Z G, WANG S Q, BAO M J, et al. Construction of ternary   constructed from nanosheets for efficient photocatalysis[J]. Small,
                 Ag/AgCl/NH 2-UiO-66 hybridized heterojunction for effective   2013, 9(16): 2702-2708.
                 photocatalytic hexavalent chromium reduction[J]. Journal of Colloid   [34]  KUO C H, CHU Y T, SONG Y F, et al. Cu 2O nanocrystal-templated
                 and Interface Science, 2019, 555: 342-351.        growth of Cu 2S nanocages with encapsulated Au nanoparticles and
            [18]  DU Q Z, WU P,  SUN Y Y, et al. Selective photodegradation of   in-situ transmission X-ray microscopy study[J]. Advanced Functional
                 tetracycline by molecularly imprinted ZnO@NH 2-UiO-66 composites[J].   Materials, 2011, 21(4): 792-797.
                 Chemical Engineering Journal, 2020, 390:124614.   [35]  CAO J, YANG Z  H, XIONG  W P,  et al. One-step synthesis of
            [19]  SU Y, ZHANG Z, LIU H, et al. Cd 0.2Zn 0.8S@UiO-66-NH 2 nanocomposites   Co-doped UiO-66 nanoparticle with enhanced removal efficiency of
                 as efficient and stable visible-light-driven photocatalyst for H 2   tetracycline: Simultaneous adsorption and photocatalysis[J].
                 evolution and CO 2 reduction[J]. Applied Catalysis B: Environmental,   Chemical Engineering Journal, 2018, 353: 126-137.
                 2017, 200: 448-457.                           [36]  YUE Y, ZHANG P, WANG W, et al. Enhanced dark adsorption and
            [20]  WANG J  L,  YUAN M,  LI C S,  et al. One-step construction of   visible-light-driven photocatalytic properties of narrower-band-gap
                 polyimide/NH 2-UiO-66 heterojunction for enhanced photocatalytic   Cu 2S decorated Cu 2O nanocomposites for efficient removal of
                 degradation of sulfonamides[J]. Journal of Colloid and Interface   organic pollutants[J]. Journal of Hazardous Materials,  2020, 384:
                 Science, 2022, 612(15): 536-549.                  121302.
            [21]  LI C X,  DING  G X,  LIU X T,  et al. Photocatalysis over   [37]  WANG C, LIU L, LIU X J,  et al. Highly-sensitive
                 NH 2-UiO-66/CoFe 2O 4/CdIn 2S 4 double  p-n junction: Significantly   electrochemiluminescence  biosensor  for  NT-proBNP  using
                 promoting  photocatalytic performance by double internal electric   MoS 2@Cu 2S as signal-enhancer and  multinary nanocrystals loaded
                 fields[J]. Chemical Engineering Journal, 2022, 435(1): 134740.   in mesoporous UiO-66-NH 2 as novel luminophore[J]. Sensors and
            [22]  LIU Y Q, ZHOU Y, TANG Q J, et al. A direct Z-scheme Bi 2WO 6/   Actuators B: Chemical, 2020, 307: 127619.
                 NH 2-UiO-66  nanocomposite as an efficient visible-light-driven   [38]  LIU Y, YANY Z H, SONG P P, et al. Facile synthesis of Bi 2MoO 6/
                 photocatalyst for NO removal[J]. RSC  Advances, 2020,  10:  1757-   ZnSnO 3 heterojunction with enhanced visible light photocatalytic
                 1768.                                             degradation of methylene blue[J]. Applied Surface Science, 2018,
            [23]  ZHANG  Y, YANG X, WANG  Y,  et al. Insight into L-cysteine-   430: 561-570.
                 assisted growth of Cu 2S nanoparticles on exfoliated MoS 2 nanosheets   [39]  MA Y L, ZHANG J, WANG Y,  et al. Concerted catalytic and
                 for effective photoreduction removal of Cr(Ⅵ)[J]. Applied Surface   photocatalytic degradation of organic pollutants over CuS/g-C 3N 4
                 Science, 2020, 518: 146191.                       catalysts under light and  dark conditions[J]. Journal of  Advanced
            [24]  ZHANG X, GUO  Y,  TIAN J,  et al.  Controllable growth of MoS 2   Research, 2019, 16(1): 135-143.
                 nanosheets on novel Cu 2S snowflakes with  high  photocatalytic   [40]  ZHAO H, YANG X, XU R,  et al. CdS/NH 2-UiO-66 hybrid
                 activity[J]. Applied Catalysis B: Environmental, 2018, 232: 355-364.   membrane reactors for the efficient  photocatalytic conversion of
            [25]  LI X, DAI K, PAN C, et al. Diethylenetriamine-functionalized CdS   CO 2[J]. Journal of Materials Chemistry A, 2018, 6(41): 20152- 20160.
                 nanoparticles  decorated on Cu 2S snowflake microparticles for   [41]  BRAHMI H, NEUPANE R, XIE L,  et al. Observation  of a low
                 photocatalytic hydrogen production[J]. ACS Applied Nano Materials,   temperature  n-p transition in individual titania nanotubes[J].
                 2020, 3(11): 11517-11526.                         Nanoscale, 2018, 10: 3863-3870.
            [26]  JIN Z, WANG X, WANG Y, et al. Snowflake-like Cu 2S coated with   [42]  JIANG D, WANG T  Y, XU Q,  et al. Perovskite oxide ultrathin
                 NiAl-LDH forms a  p-n heterojunction for efficient photocatalytic   nanosheets/g-C 3N 4 2D-2D heterojunction photocatalysts with
                 hydrogen evolution[J]. ACS Applied Energy Materials, 2021, 4(12):   significantly enhanced photocatalytic activity towards the photodegradation
                 14220-14231.                                      of tetracycline[J].  Applied Catalysis B: Environmental,  2017, 201:
            [27]  YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption   617-628.
                 and visible-light-driven photocatalytic properties of  narrower-   [43]  MANDAL P, SHOW B, AHMED S T,  et al. Visible-light active
                 band-gap Cu 2S decorated Cu 2O nanocomposites for efficient removal   electrochemically  deposited tin selenide thin films: Synthesis,
                 of organic pollutants[J]. Journal of Hazardous Materials, 2019, 384:   characterization and photocatalytic activity[J]. Journal of Materials
                 121302.                                           Science Materials in Electronics, 2020, 31: 4708-4718.
            [28]  LQBAL S, BAHADUR A, ANWER S,  et al. Shape  and phase-   [44]  WENG B,  QI M Y, HAN  C,  et al. Photocorrosion inhibition  of
                 controlled  synthesis of specially designed  2D morphologies  of   semiconductor-based photocatalysts: Basic principle, current
                 L-cysteine surface capped covellite (CuS) and chalcocite (Cu 2S) with   development, and future perspective[J]. ACS Catalysis, 2019, 9(5):
                 excellent photocatalytic properties in the visible spectrum[J]. Applied   4642-4687.
                 Surface Science, 2020, 526(1): 146691.        [45]  SHEN Q Q, WANG Y, XUE J B, et al. The dual effects of RGO films
            [29]  LI H P, LIU J Y, HOU W G , et al. Synthesis and characterization of   in TiO 2/CdSe heterojunction: Enhancing photocatalytic activity and
                 g-C 3N 4/Bi 2MoO 6  heterojunctions with enhanced visible light   improving photocorrosion resistance[J]. Applied Surface Science,
                 photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014,   2019, 481(1): 1515-1523.
                 160: 89-97.                                   [46]  MA X L,  LI H,  LIU T  Y,  et al. Comparison of photocatalytic
            [30]  JIN Z, WANG X, WANG Y, et al. Snowflake-like Cu 2S coated with   reaction-induced selective corrosion with photocorrosion: Impact on
                 NiAl-LDH forms a  p-n heterojunction for efficient photocatalytic   morphology and stability of Ag-ZnO[J]. Applied Catalysis B:
                 hydrogen evolution[J]. ACS Applied Energy Materials, 2021, 4(12):   Environmental, 2017, 201: 348-358.
                 14220-14231.                                  [47]  XIE G Y, WANG H, ZHOU Y Y, et al. Simultaneous remediation of
            [31]  LI X, DAI K, PAN C, et al. Diethylenetriamine-functionalized CdS   methylene blue and Cr(Ⅵ) by mesoporous BiVO 4 photocatalyst
                 nanoparticles  decorated on Cu 2S snowflake microparticles for   under visible-light illumination[J]. Journal of the Taiwan Institute of
                 photocatalytic hydrogen production[J]. ACS Applied Nano Materials,   Chemical Engineers, 2020, 112: 357-365.
                 2020, 3(11): 11517-11526.                     [48]  HUO  Y, YANG  Y, DAI K,  et al. Construction of 2D/2D porous
            [32]  MOUSAVI-KAMAZANI M, SALEHI Z, MOTEVALLI K.       graphitic C 3N 4/SnS 2 composite as a  direct  Z-scheme system for
                 Enhancement of quantum dot-sensitized solar cells performance   efficient visible photocatalytic activity[J]. Applied Surface Science,
                 using CuInS 2-Cu 2S nanocomposite synthesized by a green method[J].   2019, 481: 1260-1269.
                 Applied Physics A-Materials Science & Processing, 2017, 123(11):             (下转第 397 页)
   88   89   90   91   92   93   94   95   96   97   98