Page 112 - 《精细化工》2023年第4期
P. 112
g798g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
㶕 1 ԛ亝 MFC 䭠Ხ㏠ㆠᱽ᫆ࣷڣⰥڠᕔ㘪
Table 1 Modified MFC anode nanomaterials and their related properties
2 ߌ⢴ჳᏓ喍ᩦᕔݺ喎
㏠ㆠᱽ᫆ ∂ ᄦ⚔䭠Ხ ߌ⢴ჳᏓ/(mW/m ) 2 ࣺᏁகᲱಸ ࣯㔰᪴⡛
/(mW/m )
ⷠധ㏠ㆠᱽ᫆ PANI@CNT ⩢ࡃ႓↶⼜ ⴠ❴ 279.91 63.50 ࣹბ [103]
rGO ⊥⌺✒ ⷠℎ 240.2 109.4 ࣹბ [104]
MWCNT/rGO ۤۨ✒ ⷠጰ 789 127 ࣹბ [105]
rGO ࡃ႓䔅࣌Ƞ⊯㺳✒ ⷠጰ 1253 663.7 ࣹბ [106]
䛾ᆋࣷڣฺव➖ MnO 2 ⩢ࡃ႓↶⼜Ƞ☚ั⤳ ⷠℎ 3580±130 2870 ࣹბ [107]
TiO 2 ⊥⌺✒ ⷠ㏥ 392 198 ࣹბ [108]
Pd ⊯㺳✒ ⷠጰ 605 534 ࣹბ [109]
ZIF67 ⊯㺳✒ ⷠℎ 250±4 210±10 ࣹბ [110]
ᄩ⩢㖇व➖ PPy/GO ⩢ࡃ႓㖇व ⷠℎ 22400±600 1200 ࣹბ [111]
PPy/CNTs ⊯㺳✒ ⷠݤ 2970 683 ࣹბ [112]
PANI/GO ࡃ႓⅁Ⱕ↶⼜ ⷠጰ 768 158 ࣹბ [113]
fundamental studies to practical implementation[J]. Applied Energy,
3 㐀䄚̻ᆂ᱈ 2019, 233/234: 15-28.
[3] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel
ᓛ⩌➖㘋ใ⩢ၽ䒙⼨᭜⩌➖⩢ࡃ႓㈨㐌⮱䛺㺮 cells: Methodology and technology[J]. Environmental Science &
䓴⼸ȡݖ⩕㏠ㆠᱽ᫆जВ᭫㦄ᩦ㏳㣹-⩢Ხ⩹䲏হ Technology, 2006, 40(17): 5181-5192.
[4] DEBABOV V. Electricity from microorganisms[J]. Microbiology,
⩌➖⩹䲏⮱ EETȡ㏠ㆠᱽ᫆ڤᰶ䒰๔⮱℁㶕䲏⼜হ
2008, 77(2): 123-131.
䒰ѻ⮱⩢ၽ䒙⼨⩢䭨喑जܳݘ倅㏳㣹⮱叼䭱㘪߈ [5] RABAEY K, CLAUWAERT P, AELTERMAN P, et al. Tubular
হߍ䕌⩢ၽ䒙⼨䓴⼸ȡ㏠ㆠᱽ̺᫆ϲजВᑧᓛ⩌ microbial fuel cells for efficient electricity generation[J].
➖ݝ⩢ၽऄҀ⮱ EET 䓴⼸喑䔅जВ䕇䓴ౕڞ⩌㏳㣹 Environmental Science & Technology, 2005, 39(20): 8077-8082.
[6] BAGDŽINjNAS G, ŽUKAUSKAS Š, RAMANAVIýIUS A. Insights
䬡ᲱᐧϧጒᶒᶮᲒߍ䕌䬡⩢ၽ䒙⼨䓴⼸ȡ᱙᪴
into a hole transfer mechanism between glucose oxidase and a p-type
㐩䔝γӰ䔈 EET 䓴⼸⮱㏠ㆠᱽ᫆喑࠲᠙ⷠധ㏠ㆠᱽ organic semiconductor[J]. Biosensors and Bioelectronics, 2018, 102:
᫆Ƞ䓴⍎䛾ᆋ㏠ㆠᱽ᫆হᄩ⩢㖇व➖喑䄡ᬻ EET 䓴 449-455.
[7] LOVLEY D R. Extracellular electron transfer: Wires, capacitors, iron
⼸जВ䕇䓴็ᐼ䔈㵹䄰ᣔȡ
lungs, and more[J]. Geobiology, 2008, 6(3): 225-231.
ᅪノౕ䔆̭䶳ഌጟ㏼䔈㵹γ๔䛼⮱ⵁ⾣喑ѳ㏠ [8] LU Y, NISHIO K, MATSUDA S, et al. Regulation of the
ㆠᱽౕ᫆ EET 䓴⼸͚⮱҉⩕ᱧ⤳䔅䰭㺮䔈̭ₒᣏ cyanobacterial circadian clock by electrochemically controlled
⾣ȡ㏳㣹 EET 䓴⼸Ϻᰶᒵ๔⮱ᩦ䔈⾧䬡ȡ仃ٵ喑ϻ extracellular electron transfer[J]. Angewandte Chemie-International
Edition, 2014, 53(8): 2208-2211.
ᱽ᫆ݣ䕍⮱㻿ᏓᲒⰸ喑㏠ㆠᱽ᫆䰭㺮㏼䓴̺ह⮱ᩦ
[9] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive
ᕔᲒ䔯Ꮑ̺ह⮱ EET 䔈⼸ȡहᬣ喑䔅䰭㺮㔰㭾㏠ㆠ microorganisms in bioelectrochemical systems[J]. Nature Reviews
ᱽ᫆⮱יࡃᕔ㘪হ⩌➖Ⱕღᕔ喑ڤᰶ➦₷㐀Ჱহ➦ Microbiology, 2019, 17(5): 307-319.
₷ᕔ㘪⮱ᱽ᫆Ό䔘ܴ䰭㺮ᐭࣾȡڣ⁎喑Ⱋݺ⮱ⵁ [10] BUTTI S K, VELVIZHI G, SULONEN M L K, et al. Microbial
electrochemical technologies with the perspective of harnessing
⾣๔็Ӕ䛺λА䅏⩌⮱⩢ၽ⮱䛷ᩫ喑ѳⰥࣺ⮱䓴
bioenergy: Maneuvering towards upscaling[J]. Renewable and
⼸喑ᓛ⩌➖⮱⩢ၽ॥ᩣ喑Ϻ᱗㷘ᤚȡ⩢ၽ॥ᩣ⮱ Sustainable Energy Reviews, 2016, 53: 462-476.
ڲౕᱧ⤳Вࣷຯ҂ݖ⩕㏠ㆠᱽ᫆Გᩦᝃ䭨⩢ၽ [11] ZHANG H (」ᕿ), XU M Y (䃥⣘㠞), LUO J Z (㒄ᐧ͚), et al.
॥ᩣ䓴⼸Όόᒲⵁ⾣ȡᰭऻ喑ᐭࣾᰡ็ᑧࡃᓛ⩌➖- Microbial electron transfer processes in sediment microbial fuel
cells[J]. Scientia Sinica Technologica (͚ప႓: ឭᱜ႓), 2019,
⩢ᲮⰥο҉⩕⮱ゃ⪒喑ຯݖ⩕๗䭠㘪Ƞ⻨ၽ⋟ҀȠ
49(12): 1461-1472.
⅁⏣㘣ぶᩦᕔᝃԛ亝㏠ㆠᱽ᫆喑䕇䓴ߌ㘪ࡃ㏠ㆠᱽ [12] LIU X W, CHEN J J, HUANG Y X, et al. Experimental and
᫆䉸ε⩢Ხᰡ็⮱➦ᕔȡ theoretical demonstrations for the mechanism behind enhanced
microbial electron transfer by CNT network[J]. Scientific Reports,
࣯㔰᪴⡛喟 2014, 4(1): 1-7.
[13] GOODING J J, WIBOWO R, LIU J, et al. Protein electrochemistry
[1] SABA B, CHRISTY A D, YU Z, et al. Sustainable power generation
using aligned carbon nanotube arrays[J]. Journal of the American
from bacterio-algal microbial fuel cells(MFCs): An overview[J].
Chemical Society, 2003, 125(30): 9006-9007.
Renewable and Sustainable Energy Reviews, 2017, 73: 75-84.
[14] KRACKE F, VASSILEV I, KRÖMER J O. Microbial electron
[2] CHEN S, PATIL S A, BROWN R K, et al. Strategies for optimizing
transport and energy conservation-the foundation for optimizing
the power output of microbial fuel cells: Transitioning from
bioelectrochemical systems[J]. Frontiers in Microbiology, 2015, 6: