Page 112 - 《精细化工》2023年第4期
P. 112

g798g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

                                          㶕 1   ԛ亝 MFC 䭠Ხ㏠ㆠᱽ᫆ࣷڣⰥڠᕔ㘪
                                 Table 1    Modified MFC anode nanomaterials and their related properties
                                                                           2 ߌ⢴ჳᏓ喍ᩦᕔݺ喎
                     ㏠ㆠᱽ᫆                   ᫦∂         ᄦ⚔䭠Ხ ߌ⢴ჳᏓ/(mW/m )               2    ࣺᏁகᲱಸ ࣯㔰᪴⡛
                                                                                 /(mW/m )
             ⷠധ㏠ㆠᱽ᫆       PANI@CNT    ⩢ࡃ႓↶⼜            ⴠ෕❴          279.91          63.50      ࣹბ      [103]
                          rGO         ⊥⌺᎟✒             ⷠℎ           240.2           109.4      ࣹბ      [104]
                          MWCNT/rGO  ۤۨ᎟✒              ⷠጰ            789             127       ࣹბ      [105]
                          rGO         ࡃ႓䔅࣌Ƞ⊯㺳᎟✒        ⷠጰ           1253            663.7      ࣹბ      [106]
             䛾ᆋࣷڣฺव➖      MnO 2       ⩢ࡃ႓↶⼜Ƞ☚ั⤳        ⷠℎ          3580±130         2870       ࣹბ      [107]
                          TiO 2       ⊥⌺᎟✒             ⷠ㏥            392             198       ࣹბ      [108]
                          Pd          ⊯㺳᎟✒             ⷠጰ            605             534       ࣹბ      [109]
                          ZIF67       ⊯㺳᎟✒             ⷠℎ           250±4         210±10       ࣹბ      [110]
             ᄩ⩢㖇व➖        PPy/GO      ⩢ࡃ႓㖇व            ⷠℎ         22400±600         1200       ࣹბ      [111]
                          PPy/CNTs    ⊯㺳᎟✒             ⷠݤ           2970             683       ࣹბ      [112]
                          PANI/GO     ࡃ႓⅁Ⱕ↶⼜           ⷠጰ            768             158       ࣹბ      [113]

                                                                   fundamental studies to practical implementation[J]. Applied Energy,
            3   㐀᲌䄚̻ᆂ᱈                                             2019, 233/234: 15-28.
                                                               [3]   LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel
                 ᓛ⩌➖㘋ใ⩢ၽ䒙⼨᭜⩌➖⩢ࡃ႓㈨㐌⮱䛺㺮                              cells: Methodology and technology[J]. Environmental Science &
            䓴⼸ȡݖ⩕㏠ㆠᱽ᫆जВ᭫㦄ᩦ઱㏳㣹-⩢Ხ⩹䲏হ                                Technology, 2006, 40(17): 5181-5192.
                                                               [4]   DEBABOV V. Electricity from  microorganisms[J]. Microbiology,
            ⩌➖⩹䲏⮱ EETȡ㏠ㆠᱽ᫆ڤᰶ䒰๔⮱℁㶕䲏⼜হ
                                                                   2008, 77(2): 123-131.
            䒰ѻ⮱⩢ၽ䒙⼨⩢䭨喑जܳݘ᣽倅㏳㣹⮱叼䭱㘪߈                             [5]   RABAEY K,  CLAUWAERT P,  AELTERMAN P,  et al. Tubular
            হߍ䕌⩢ၽ䒙⼨䓴⼸ȡ㏠ㆠᱽ̺᫆ϲजВ෋ᑧᓛ⩌                                 microbial fuel cells for efficient electricity generation[J].
            ➖ݝ⩢ၽऄҀ⮱ EET 䓴⼸喑䔅जВ䕇䓴ౕڞ⩌㏳㣹                              Environmental Science & Technology, 2005, 39(20): 8077-8082.
                                                               [6]  BAGDŽINjNAS G, ŽUKAUSKAS Š, RAMANAVIýIUS A. Insights
            ͸䬡ᲱᐧϧጒᶒᶮᲒߍ䕌⻺䬡⩢ၽ䒙⼨䓴⼸ȡ᱙᪴
                                                                   into a hole transfer mechanism between glucose oxidase and a p-type
            㐩䔝γӰ䔈 EET 䓴⼸⮱㏠ㆠᱽ᫆喑࠲᠙ⷠധ㏠ㆠᱽ                              organic semiconductor[J]. Biosensors and Bioelectronics, 2018, 102:
            ᫆Ƞ䓴⍎䛾ᆋ㏠ㆠᱽ᫆হᄩ⩢㖇व➖喑䄡ᬻ EET 䓴                              449-455.
                                                               [7]   LOVLEY D R. Extracellular electron transfer: Wires, capacitors, iron
            ⼸जВ䕇䓴็⻺᫦ᐼ䔈㵹䄰ᣔȡ
                                                                   lungs, and more[J]. Geobiology, 2008, 6(3): 225-231.
                 ᅪノౕ䔆̭䶳ഌጟ㏼䔈㵹γ๔䛼⮱ⵁ⾣喑ѳ㏠                          [8]   LU  Y, NISHIO  K, MATSUDA S,  et al. Regulation of  the
            ㆠᱽౕ᫆ EET 䓴⼸͚⮱҉⩕ᱧ⤳䔅䰭㺮䔈̭ₒᣏ                               cyanobacterial circadian clock by electrochemically  controlled
            ⾣ȡ㏳㣹 EET 䓴⼸Ϻᰶᒵ๔⮱ᩦ䔈⾧䬡ȡ仃ٵ喑ϻ                              extracellular electron transfer[J]. Angewandte Chemie-International
                                                                   Edition, 2014, 53(8): 2208-2211.
            ᱽ᫆ݣ䕍⮱㻿ᏓᲒⰸ喑㏠ㆠᱽ᫆䰭㺮㏼䓴̺ह⮱ᩦ
                                                               [9]   LOGAN B E,  ROSSI R, RAGAB A,  et al. Electroactive
            ᕔᲒ䔯Ꮑ̺ह⮱ EET 䔈⼸ȡहᬣ喑䔅䰭㺮㔰㭾㏠ㆠ                              microorganisms in bioelectrochemical systems[J].  Nature Reviews
            ᱽ᫆⮱יࡃᕔ㘪হ⩌➖Ⱕღᕔ喑ڤᰶ➦₷㐀Ჱহ➦                                 Microbiology, 2019, 17(5): 307-319.
            ₷ᕔ㘪⮱᫝ᱽ᫆Ό䔘ܴ䰭㺮ᐭࣾȡڣ⁎喑Ⱋݺ⮱ⵁ                             [10]  BUTTI S K, VELVIZHI G, SULONEN M  L  K,  et al. Microbial
                                                                   electrochemical technologies with the perspective of harnessing
            ⾣๔็Ӕ䛺λА䅏⩌᜽⮱⩢ၽ⮱䛷ᩫ喑ѳⰥࣺ⮱䓴
                                                                   bioenergy: Maneuvering towards upscaling[J]. Renewable and
            ⼸喑ᓛ⩌➖⮱⩢ၽ॥ᩣ喑Ϻ᱗㷘ᤚ⹧ȡ⩢ၽ॥ᩣ⮱                                 Sustainable Energy Reviews, 2016, 53: 462-476.
            ڲౕᱧ⤳Вࣷຯ҂ݖ⩕㏠ㆠᱽ᫆Გᩦ઱ᝃ䭨₏⩢ၽ                             [11]  ZHANG H (」ᕿ), XU M Y (䃥⣘㠞), LUO J  Z (㒄ᐧ͚),  et al.
            ॥ᩣ䓴⼸Όόᒲⵁ⾣ȡᰭऻ喑ᐭࣾᰡ็ᑧࡃᓛ⩌➖-                                Microbial electron transfer  processes in sediment microbial fuel
                                                                   cells[J]. Scientia Sinica Technologica (͚ప⻾႓:  ឭᱜ⻾႓), 2019,
            ⩢ᲮⰥο҉⩕⮱ゃ⪒喑ຯݖ⩕๗䭠㘪Ƞ⻨ၽ⋟ҀȠ
                                                                   49(12): 1461-1472.
            ⅁⏣㘣ぶᩦᕔᝃԛ亝㏠ㆠᱽ᫆喑䕇䓴ߌ㘪ࡃ㏠ㆠᱽ                             [12]  LIU X W, CHEN J J, HUANG Y  X,  et al. Experimental and
            ᫆䉸ε⩢Ხᰡ็⮱➦ᕔȡ                                            theoretical demonstrations for the  mechanism behind enhanced
                                                                   microbial electron  transfer by CNT network[J]. Scientific Reports,
            ࣯㔰᪴⡛喟                                                  2014, 4(1): 1-7.
                                                               [13]  GOODING J J, WIBOWO R, LIU J, et al. Protein electrochemistry
            [1]   SABA B, CHRISTY A D, YU Z, et al. Sustainable power generation
                                                                   using aligned carbon nanotube arrays[J]. Journal of the American
                 from bacterio-algal microbial fuel cells(MFCs): An  overview[J].
                                                                   Chemical Society, 2003, 125(30): 9006-9007.
                 Renewable and Sustainable Energy Reviews, 2017, 73: 75-84.
                                                               [14]  KRACKE F, VASSILEV I, KRÖMER J O.  Microbial electron
            [2]   CHEN S, PATIL S A, BROWN R K, et al. Strategies for optimizing
                                                                   transport and energy conservation-the foundation for  optimizing
                 the power  output of microbial  fuel cells: Transitioning from
                                                                   bioelectrochemical  systems[J]. Frontiers in Microbiology, 2015, 6:
   107   108   109   110   111   112   113   114   115   116   117