Page 113 - 《精细化工》2023年第4期
P. 113
す 4 㟼㉘㡳喑ぶ: Ӱ䔈ᓛ⩌➖㘋ใ⩢ၽ䒙⼨⮱㏠ㆠᱽ᫆ⵁ⾣䔈ᆂ g799g
575. nanomaterials for multifunctional applications[J]. Journal of
[15] FONSECA B M, PAQUETE C M, NETO S E, et al. Mind the gap: Nanobiotechnology, 2021, 19(1): 1-27.
Cytochrome interactions reveal electron pathways across the [33] OKAMOTO A, HASHIMOTO K, NEALSON K H, et al. Rate
periplasm of Shewanella oneidensis MR-1[J]. Biochemical Journal, enhancement of bacterial extracellular electron transport involves
2013, 449(1): 101-108. bound flavin semiquinones[J]. Proceedings of the National Academy
[16] LOVLEY D R. Electromicrobiology[J]. Annual Review of of Sciences, 2013, 110(19): 7856-7861.
Microbiology, 2012, 66(1): 391-409. [34] REN X M, CHEN C L, NAGATSU M, et al. Carbon nanotubes as
[17] SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer adsorbents in environmental pollution management: A review[J].
mechanisms between microorganisms and minerals[J]. Nature Chemical Engineering Journal, 2011, 170(2/3): 395-410.
Reviews Microbiology, 2016, 14(10): 651-662. [35] SUN J J, ZHAO H Z, YANG Q Z, et al. A novel layer-by-layer
[18] COURSOLLE D, GRALNICK J A. Modularity of the Mtr self-assembled carbon nanotube-based anode: Preparation,
respiratory pathway of Shewanella oneidensis strain MR-1[J]. characterization, and application in microbial fuel cell[J].
Molecular Microbiology, 2010, 77(4): 995-1008. Electrochimica Acta, 2010, 55(9): 3041-3047.
[19] SHI L, RICHARDSON D J, WANG Z, et al. The roles of outer [36] TSAI H Y, WU C C, LEE C Y, et al. Microbial fuel cell performance
membrane cytochromes of Shewanella and Geobacter in extracellular of multiwall carbon nanotubes on carbon cloth as electrodes[J].
electron transfer[J]. Environmental Microbiology Reports, 2009, Journal of Power Sources, 2009, 194(1): 199-205.
1(4): 220-227. [37] AJAYAN P M. Nanotubes from carbon[J]. Chemical Reviews, 1999,
[20] HARTSHORNE R S, REARDON C L, ROSS D, et al. 99(7): 1787-1800.
Characterization of an electron conduit between bacteria and the [38] WANG J X, LI M X, SHI Z J, et al. Direct electrochemistry of
extracellular environment[J]. Proceedings of the National Academy cytochrome c at a glassy carbon electrode modified with single-wall
of Sciences, 2009, 106(52): 22169-22174. carbon nanotubes[J]. Analytical Chemistry, 2002, 74(9): 1993-1997.
[21] LOVLEY D R, UEKI T, ZHANG T, et al. Geobacter: The microbe [39] REN H, PYO S, LEE J I, et al. A high power density miniaturized
electric's physiology, ecology, and practical applications[J]. microbial fuel cell having carbon nanotube anodes[J]. Journal of
Advances in Microbial Physiology, 2011, 59: 1-100. Power Sources, 2015, 273: 823-830.
[22] LIU Y F, ZHANG X Q, ZHANG Q C, et al. Microbial fuel cells: [40] LIU Y F, SUN Y X, LI H Y, et al. Co-filtration of bacteria/
Nanomaterials based on anode and their application[J]. Energy electrospun oriented carbon nanofibers integrating with carbon
Technology, 2020, 8(9): 2000206. nanotubes for microbial fuel cell[J]. Journal of Environmental
[23] LIU S R (݅༊Ⲭ), WU X E (ॡ䰗དྷ), WANG Y P (⢸䔉卼). Chemical Engineering, 2022, 10(3): 107664.
Progress in nanomaterials mediated microbial extracellular electron [41] GENG J, KIM K H, ZHANG J F, et al. Stochastic transport through
transfer[J]. CIESC Journal (ࡃጒ႓្), 2021, 72(7): 3576-3589. carbon nanotubes in lipid bilayers and live cell membranes[J].
[24] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular Nature, 2014, 514(7524): 612-615.
electron transfer via microbial nanowires[J]. Nature, 2005, [42] ZAMALEEVA A I, SHARIPOVA I R, PORFIREVA A V, et al.
435(7045): 1098-1101. Polyelectrolyte-mediated assembly of multiwalled carbon nanotubes
[25] LIU X, ZHAN J, JING X Y, et al. A pilin chaperone required for the on living yeast cells[J]. Langmuir, 2010, 26(4): 2671-2679.
expression of electrically conductive Geobacter sulfurreducens [43] LIANG P, WANG H Y, XIA X, et al. Carbon nanotube powders as
pili[J]. Environmental Microbiology, 2019, 21(7): 2511-2522. electrode modifier to enhance the activity of anodic biofilm in
[26] GORGEL M, ULSTRUP J J, BØGGILD A, et al. High-resolution microbial fuel cells[J]. Biosensors & Bioelectronics, 2011, 26(6):
structure of a type Ė pilin from the metal-reducing bacterium 3000-3004.
Shewanella oneidensis[J]. BMC Structural Biology, 2015, 15(1): [44] WU Z S, PEI S, REN W, et al. Field emission of single-layer
1-17. graphene films prepared by electrophoretic deposition[J]. Advanced
[27] EL-NAGGAR M Y, WANGER G, LEUNG K M, et al. Electrical Materials, 2009, 21(17): 1756-1760.
transport along bacterial nanowires from Shewanella oneidensis [45] GUO F, SILVERBERG G, BOWERS S, et al. Graphene-based
MR-1[J]. Proceedings of the National Academy of Sciences, 2010, environmental barriers[J]. Environmental Science & Technology,
107(42): 18127-18131. 2012, 46(14): 7717-7724.
[28] YOU L X, LIU L D, XIAO Y, et al. Flavins mediate extracellular [46] ZHAO C E, WANG Y, SHI F J, et al. High biocurrent generation in
electron transfer in gram-positive Bacillus megaterium strain Shewanella-inoculated microbial fuel cells using ionic liquid
LLD-1[J]. Bioelectrochemistry, 2018, 119: 196-202. functionalized graphene nanosheets as an anode[J]. Chemical
[29] WU S, XIAO Y, WANG L, et al. Extracellular electron transfer Communications, 2013, 49(59): 6668-6670.
mediated by flavins in gram-positive Bacillus sp. WS-XY1 and yeast [47] ZHU Y X, JI J Y, REN J Y, et al. Conductive multilayered
Pichia stipitis[J]. Electrochimica Acta, 2014, 146: 564-567. polyelectrolyte films improved performance in microbial fuel
[30] XIAO Y, ZHANG E H, ZHANG J D, et al. Extracellular polymeric cells(MFCs)[J]. Colloids and Surfaces A: Physicochemical and
substances are transient media for microbial extracellular electron Engineering Aspects, 2014, 455: 92-96.
transfer[J]. Science Advances, 2017, 3(7): 1-9. [48] CHEN W F, HUANG Y X, LI D B, et al. Preparation of a
[31] YI Y, ZHAO T, ZANG Y X, et al. Different mechanisms for macroporous flexible three dimensional graphene sponge using an
riboflavin to improve the outward and inward extracellular electron ice-template as the anode material for microbial fuel cells[J]. RSC
transfer of Shewanella loihica[J]. Electrochemistry Communications, Advances, 2014, 4(41): 21619-21624.
2021, 124: 106966. [49] YONG Y C, YU Y Y, ZHANG X, et al. Highly active bidirectional
[32] ZOU L, ZHU F, LONG Z E, et al. Bacterial extracellular electron electron transfer by a self-assembled electroactive reduced-graphene-
transfer: A powerful route to the green biosynthesis of inorganic oxide-hybridized biofilm[J]. Angewandte Chemie International