Page 113 - 《精细化工》2023年第4期
P. 113

す 4 ᱌                    㟼㉘㡳喑ぶ:  Ӱ䔈ᓛ⩌➖㘋ใ⩢ၽ䒙⼨⮱㏠ㆠᱽ᫆ⵁ⾣䔈ᆂ                                    g799g


                 575.                                              nanomaterials for  multifunctional applications[J]. Journal of
            [15]  FONSECA B M, PAQUETE C M, NETO S E, et al. Mind the gap:   Nanobiotechnology, 2021, 19(1): 1-27.
                 Cytochrome interactions  reveal electron pathways across the   [33]  OKAMOTO A, HASHIMOTO K, NEALSON K H,  et al. Rate
                 periplasm of Shewanella oneidensis MR-1[J]. Biochemical Journal,   enhancement of bacterial extracellular electron transport involves
                 2013, 449(1): 101-108.                            bound flavin semiquinones[J]. Proceedings of the National Academy
            [16]  LOVLEY D  R. Electromicrobiology[J]. Annual  Review of   of Sciences, 2013, 110(19): 7856-7861.
                 Microbiology, 2012, 66(1): 391-409.           [34]  REN X M, CHEN C L, NAGATSU M, et al. Carbon nanotubes as
            [17]  SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer   adsorbents in environmental pollution management: A review[J].
                 mechanisms  between microorganisms and minerals[J].  Nature   Chemical Engineering Journal, 2011, 170(2/3): 395-410.
                 Reviews Microbiology, 2016, 14(10): 651-662.     [35]  SUN J J,  ZHAO  H Z, YANG Q Z,  et al.  A novel layer-by-layer
            [18]  COURSOLLE D, GRALNICK J  A. Modularity of the Mtr   self-assembled  carbon  nanotube-based  anode:  Preparation,
                 respiratory pathway of  Shewanella oneidensis  strain MR-1[J].   characterization, and application in microbial fuel cell[J].
                 Molecular Microbiology, 2010, 77(4): 995-1008.     Electrochimica Acta, 2010, 55(9): 3041-3047.
            [19]  SHI L, RICHARDSON D J, WANG Z,  et al. The roles of outer   [36]  TSAI H Y, WU C C, LEE C Y, et al. Microbial fuel cell performance
                 membrane cytochromes of Shewanella and Geobacter in extracellular   of multiwall carbon nanotubes on carbon cloth as electrodes[J].
                 electron transfer[J]. Environmental Microbiology Reports, 2009,   Journal of Power Sources, 2009, 194(1): 199-205.
                 1(4): 220-227.                                [37]  AJAYAN P M. Nanotubes from carbon[J]. Chemical Reviews, 1999,
            [20]  HARTSHORNE  R S, REARDON C L, ROSS D,  et al.    99(7): 1787-1800.
                 Characterization of an electron conduit between bacteria and the   [38]  WANG J X,  LI M X, SHI Z J,  et al. Direct electrochemistry of
                 extracellular environment[J]. Proceedings of the National Academy   cytochrome c at a glassy carbon electrode modified with single-wall
                 of Sciences, 2009, 106(52): 22169-22174.          carbon nanotubes[J]. Analytical Chemistry, 2002, 74(9): 1993-1997.
            [21]  LOVLEY D R, UEKI T, ZHANG T, et al. Geobacter: The microbe   [39]  REN H, PYO S, LEE J I, et al. A high power density miniaturized
                 electric's physiology, ecology, and practical applications[J].   microbial fuel cell having carbon nanotube anodes[J]. Journal of
                 Advances in Microbial Physiology, 2011, 59: 1-100.     Power Sources, 2015, 273: 823-830.
            [22]  LIU Y F, ZHANG X Q, ZHANG Q C, et al. Microbial fuel cells:   [40]  LIU Y F, SUN Y X, LI H Y,  et al. Co-filtration of bacteria/
                 Nanomaterials based on anode and their application[J]. Energy   electrospun oriented carbon nanofibers integrating with carbon
                 Technology, 2020, 8(9): 2000206.                  nanotubes for microbial fuel cell[J]. Journal of Environmental
            [23]  LIU S R (݅༊Ⲭ), WU  X E  (ॡ䰗དྷ), WANG Y  P (⢸䔉卼).   Chemical Engineering, 2022, 10(3): 107664.
                 Progress in nanomaterials mediated  microbial extracellular electron   [41]  GENG J, KIM K H, ZHANG J F, et al. Stochastic transport through
                 transfer[J]. CIESC Journal (ࡃጒ႓្), 2021, 72(7): 3576-3589.     carbon nanotubes  in lipid bilayers and live cell membranes[J].
            [24]  REGUERA G, MCCARTHY  K  D, MEHTA  T,  et al. Extracellular   Nature, 2014, 514(7524): 612-615.
                 electron transfer  via microbial nanowires[J]. Nature, 2005,   [42]  ZAMALEEVA A I, SHARIPOVA I R, PORFIREVA  A V,  et al.
                 435(7045): 1098-1101.                             Polyelectrolyte-mediated assembly of multiwalled carbon nanotubes
            [25]  LIU X, ZHAN J, JING X Y, et al. A pilin chaperone required for the   on living yeast cells[J]. Langmuir, 2010, 26(4): 2671-2679.
                 expression  of electrically conductive  Geobacter sulfurreducens   [43]  LIANG P, WANG H Y, XIA X, et al. Carbon nanotube powders as
                 pili[J]. Environmental Microbiology, 2019, 21(7): 2511-2522.     electrode modifier to enhance the activity of anodic  biofilm in
            [26]  GORGEL M, ULSTRUP J J,  BØGGILD A,  et al. High-resolution   microbial fuel cells[J]. Biosensors & Bioelectronics, 2011, 26(6):
                 structure of a type  Ė pilin from the  metal-reducing  bacterium   3000-3004.
                 Shewanella oneidensis[J]. BMC Structural Biology, 2015, 15(1):   [44]  WU Z S, PEI S,  REN W,  et al. Field emission  of  single-layer
                 1-17.                                             graphene films prepared by electrophoretic deposition[J]. Advanced
            [27]  EL-NAGGAR M Y, WANGER G, LEUNG K M,  et al. Electrical   Materials, 2009, 21(17): 1756-1760.
                 transport along bacterial nanowires from  Shewanella oneidensis   [45]  GUO F, SILVERBERG G, BOWERS S,  et al. Graphene-based
                 MR-1[J]. Proceedings of the National Academy of Sciences, 2010,   environmental barriers[J]. Environmental Science & Technology,
                 107(42): 18127-18131.                             2012, 46(14): 7717-7724.
            [28]  YOU L  X, LIU  L D, XIAO Y,  et al. Flavins mediate extracellular   [46]  ZHAO C E, WANG Y, SHI F J, et al. High biocurrent generation in
                 electron transfer  in gram-positive  Bacillus megaterium strain   Shewanella-inoculated microbial fuel cells using  ionic liquid
                 LLD-1[J]. Bioelectrochemistry, 2018, 119: 196-202.     functionalized graphene nanosheets as an anode[J]. Chemical
            [29]  WU S, XIAO Y,  WANG L,  et al.  Extracellular electron transfer   Communications, 2013, 49(59): 6668-6670.
                 mediated by flavins in gram-positive Bacillus sp. WS-XY1 and yeast   [47]  ZHU  Y X, JI J Y, REN J Y,  et al. Conductive multilayered
                 Pichia stipitis[J]. Electrochimica Acta, 2014, 146: 564-567.     polyelectrolyte films improved performance in  microbial fuel
            [30]  XIAO Y, ZHANG E H, ZHANG J D, et al. Extracellular polymeric   cells(MFCs)[J]. Colloids and Surfaces A: Physicochemical  and
                 substances are transient media for microbial extracellular electron   Engineering Aspects, 2014, 455: 92-96.
                 transfer[J]. Science Advances, 2017, 3(7): 1-9.     [48]  CHEN W F, HUANG  Y  X,  LI D B,  et al. Preparation of a
            [31]  YI  Y,  ZHAO T,  ZANG Y X,  et al. Different mechanisms for   macroporous  flexible three dimensional graphene sponge using an
                 riboflavin to improve the outward and inward extracellular electron   ice-template as the anode material for microbial fuel cells[J]. RSC
                 transfer of Shewanella loihica[J]. Electrochemistry Communications,   Advances, 2014, 4(41): 21619-21624.
                 2021, 124: 106966.                            [49]  YONG Y C, YU Y Y, ZHANG X, et al. Highly active bidirectional
            [32]  ZOU L,  ZHU F, LONG Z E,  et al. Bacterial extracellular electron   electron transfer by  a self-assembled  electroactive reduced-graphene-
                 transfer: A powerful route to the green biosynthesis of inorganic   oxide-hybridized biofilm[J]. Angewandte Chemie International
   108   109   110   111   112   113   114   115   116   117   118