Page 114 - 《精细化工》2023年第4期
P. 114
g800g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
Edition, 2014, 53(17): 4480-4483. microbial fuel cell[J]. Biosensors and Bioelectronics, 2014, 58:
[50] KARRA U, MANICKAM S S, MCCUTCHEON J R, et al. Power 75-80.
generation and organics removal from wastewater using activated [67] HABIBI M F, ARVAND M, SOHRABNEZHAD S. Boosting
carbon nanofiber (ACNF) microbial fuel cells (MFCs)[J]. bioelectricity generation in microbial fuel cells using metal@metal
International Journal of Hydrogen Energy, 2013, 38(3): 1588-1597. oxides/nitrogen-doped carbon quantum dots[J]. Energy, 2021, 223:
[51] SONG X R, LIU J, JIANG Q, et al. Enhanced electron transfer and 120103-120111.
methane production from low-strength wastewater using a new [68] LIU Y F, ZHANG X L, LI H Y, et al. Porous Į-Fe 2O 3 nanofiber
granular activated carbon modified with nano-Fe 3O 4[J]. Chemical combined with carbon nanotube as anode to enhance the
Engineering Journal, 2019, 374: 1344-1352. bioelectricity generation for microbial fuel cell[J]. Electrochimica
[52] LV Z S, XIE D H, YUE X J, et al. Ruthenium oxide-coated carbon Acta, 2021, 391: 138984.
felt electrode: A highly active anode for microbial fuel cell [69] KATO S, HASHIMOTO K, WATANABE K. Iron-oxide minerals
applications[J]. Journal of Power Sources, 2012, 210: 26-31. affect extracellular electron-transfer paths of Geobacter spp. [J].
[53] ZHANG P, LIU J, QU Y P, et al. Nanomaterials for facilitating Microbes and Environments, 2013, 28(1): 141-148.
microbial extracellular electron transfer: Recent progress and [70] NAKAMURA R, KAI F, OKAMOTO A, et al. Mechanisms of
challenges[J]. Bioelectrochemistry, 2018, 123: 190-200. long-distance extracellular electron transfer of metal-reducing
[54] WU X E, ZHAO F, RAHUNEN N, et al. A role for microbial bacteria mediated by nanocolloidal semiconductive iron oxides[J].
palladium nanoparticles in extracellular electron transfer[J]. Journal of Materials Chemistry A, 2013, 1(16): 5148-5157.
Angewandte Chemie-International Edition, 2011, 50(2): 427-430. [71] CHEN Z, ZHANG Y X, LUO Q L, et al. Maghemite (gamma-Fe 2O 3)
[55] QUAN X C, XU H D, SUN B, et al. Anode modification with nanoparticles enhance dissimilatory ferrihydrite reduction by
palladium nanoparticles enhanced Evans Blue removal and power Geobacter sulfurreducens: Impacts on iron mineralogical change and
generation in microbial fuel cells[J]. International Biodeterioration & bacterial interactions[J]. Journal of Environmental Sciences, 2019,
Biodegradation, 2018, 132: 94-101. 78: 193-203.
[56] LOGAN B E. Exoelectrogenic bacteria that power microbial fuel [72] ZHOU J (কᲝ), YANG M L (Ვᬻ㢶). Recent research progress in
cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381. electrochemical preparation of MOF films[J]. Materials Reports (ᱽ
[57] SCHRÖDER U. Anodic electron transfer mechanisms in microbial ᫆ᄩ្), 2020, 34(19): 19043-19049.
fuel cells and their energy efficiency[J]. Physical Chemistry [73] KITAO T, ZHANG Y Y, KITAGAWA S, et al. Hybridization of
Chemical Physics, 2007, 9(21): 2619-2629. MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11):
[58] ZHOU H, LIU L, YIN K, et al. Electrochemical investigation on the 3108-3133.
catalytic ability of tyrosinase with the effect of nano titanium [74] DAS I, NOORI M T, SHAIKH M, et al. Synthesis and application of
dioxide[J]. Electrochemistry Communications, 2006, 8(7): 1168-1172. zirconium metal-organic framework in microbial fuel cells as a cost-
[59] YIN T, LIN Z Y, SU L, et al. Preparation of vertically oriented TiO 2 effective oxygen reduction catalyst with competitive performance[J].
nanosheets modified carbon paper electrode and its enhancement to ACS Applied Energy Materials, 2020, 3(4): 3512-3520.
the performance of MFCs[J]. ACS Applied Materials & Interfaces, [75] XUE W D, ZHOU Q X, LI F X. The feasibility of typical
2015, 7(1): 400-408. metal-organic framework derived Fe, Co, N co-doped carbon as a
[60] TANG J H, YUAN Y, LIU T, et al. High-capacity carbon-coated robust electrocatalyst for oxygen reduction reaction in microbial fuel
titanium dioxide core-shell nanoparticles modified three dimensional cell[J]. Electrochimica Acta, 2020, 355: 136775.
anodes for improved energy output in microbial fuel cells[J]. Journal [76] ZHANG S, SU W, LI K X, et al. Metal organic framework-derived
of Power Sources, 2015, 274: 170-176. Co 3O 4/NiCo 2O 4 double-shelled nanocage modified activated carbon
[61] SU L, YIN T, DU H G, et al. Synergistic improvement of Shewanella air-cathode for improving power generation in microbial fuel cell[J].
loihica PV-4 extracellular electron transfer using a TiO 2@TiN Journal of Power Sources, 2018, 396: 355-362.
nanocomposite[J]. Bioelectrochemistry, 2020, 134: 107519. [77] FAN M J, ZHANG W, SUN J Y, et al. Different modified
[62] ZHOU Y L, YANG Y, CHEN M, et al. To improve the performance multi-walled carbon nanotube-based anodes to improve the
of sediment microbial fuel cell through amending colloidal iron performance of microbial fuel cells[J]. International Journal of
oxyhydroxide into freshwater sediments[J]. Bioresource Technology, Hydrogen Energy, 2017, 42(36): 22786-22795.
2014, 159: 232-239. [78] YE K, WANG L J, SONG H W, et al. Bifunctional MIL-53(Fe) with
[63] FENG C H, YUE X J, LI F B, et al. Bio-current as an indicator for pyrophosphate-mediated peroxidase-like activity and oxidation-
biogenic Fe (Ĕ) generation driven by dissimilatory iron reducing stimulated fluorescence switching for alkaline phosphatase detection[J].
bacteria[J]. Biosensors and Bioelectronics, 2013, 39(1): 51-56. Journal of Materials Chemistry B, 2019, 7(31): 4794-4800.
[64] CHEN Z, ZHANG Y X, LUO Q L, et al. Maghemite (Ȗ-Fe 2O 3) [79] KAUR R, SINGH S, CHHABRA V A, et al. A sustainable approach
nanoparticles enhance dissimilatory ferrihydrite reduction by towards utilization of plastic waste for an efficient electrode in
Geobacter sulfurreducens: Impacts on iron mineralogical change and microbial fuel cell applications[J]. Journal of Hazardous Materials,
bacterial interactions[J]. Journal of Environmental Sciences, 2019, 2021, 417: 125992.
78: 193-203. [80] WANG J, LI B, WANG S P, et al. Metal-organic framework-derived
[65] LOWY D A, TENDER L M, ZEIKUS J G, et al. Harvesting energy iron oxide modified carbon cloth as a high-power density microbial
from the marine sediment-water interface Ĕ: Kinetic activity of fuel cell anode[J]. Journal of Cleaner Production, 2022, 341: 130725.
anode materials[J]. Biosensors and Bioelectronics, 2006, 21(11): [81] XU H T, HUANG J X, LIN C G, et al. Bio-functional metal organic
2058-2063. framework composite as bioanode for enhanced electricity generation
[66] PARK I H, CHRISTY M, KIM P, et al. Enhanced electrical contact by a microbial fuel cell[J]. Electrochimica Acta, 2021, 368: 137622.
of microbes using Fe 3O 4/CNT nanocomposite anode in mediator-less [82] YU B, LI Y H, FENG L. Enhancing the performance of soil