Page 114 - 《精细化工》2023年第4期
P. 114

g800g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

                 Edition, 2014, 53(17): 4480-4483.                 microbial fuel cell[J]. Biosensors and Bioelectronics, 2014, 58:
            [50]  KARRA U, MANICKAM S S, MCCUTCHEON J R, et al. Power   75-80.
                 generation and organics removal from wastewater using activated   [67]  HABIBI M F, ARVAND M, SOHRABNEZHAD S. Boosting
                 carbon nanofiber (ACNF) microbial fuel cells  (MFCs)[J].   bioelectricity generation in microbial fuel cells using metal@metal
                 International Journal of Hydrogen Energy, 2013, 38(3): 1588-1597.     oxides/nitrogen-doped carbon quantum dots[J]. Energy, 2021, 223:
            [51]  SONG X R, LIU J, JIANG Q, et al. Enhanced electron transfer and   120103-120111.
                 methane production from low-strength wastewater using a new   [68]  LIU Y F,  ZHANG X L, LI H Y,  et al. Porous  Į-Fe 2O 3 nanofiber
                 granular activated  carbon modified with  nano-Fe 3O 4[J]. Chemical   combined with carbon  nanotube  as anode to enhance the
                 Engineering Journal, 2019, 374: 1344-1352.        bioelectricity generation  for microbial fuel cell[J]. Electrochimica
            [52]  LV Z S, XIE D H, YUE X J, et al. Ruthenium oxide-coated carbon   Acta, 2021, 391: 138984.
                 felt electrode: A  highly active anode for microbial fuel cell   [69]  KATO S, HASHIMOTO  K,  WATANABE K. Iron-oxide  minerals
                 applications[J]. Journal of Power Sources, 2012, 210: 26-31.     affect extracellular electron-transfer paths of  Geobacter spp. [J].
            [53]  ZHANG P, LIU J, QU Y P,  et al.  Nanomaterials for facilitating   Microbes and Environments, 2013, 28(1): 141-148.
                 microbial extracellular electron transfer: Recent progress and   [70]  NAKAMURA R,  KAI F, OKAMOTO  A,  et al. Mechanisms of
                 challenges[J]. Bioelectrochemistry, 2018, 123: 190-200.     long-distance extracellular electron transfer of metal-reducing
            [54]  WU X E, ZHAO  F, RAHUNEN N,  et al. A role for  microbial   bacteria  mediated  by nanocolloidal semiconductive iron oxides[J].
                 palladium nanoparticles in extracellular electron transfer[J].   Journal of Materials Chemistry A, 2013, 1(16): 5148-5157.
                 Angewandte Chemie-International Edition, 2011, 50(2): 427-430.     [71]  CHEN Z, ZHANG Y X, LUO Q L, et al. Maghemite (gamma-Fe 2O 3)
            [55]  QUAN X C,  XU  H D, SUN B,  et al.  Anode modification with   nanoparticles enhance dissimilatory ferrihydrite reduction by
                 palladium nanoparticles enhanced Evans Blue removal and power   Geobacter sulfurreducens: Impacts on iron mineralogical change and
                 generation in microbial fuel cells[J]. International Biodeterioration &   bacterial interactions[J]. Journal  of Environmental Sciences, 2019,
                 Biodegradation, 2018, 132: 94-101.                78: 193-203.
            [56]  LOGAN  B E.  Exoelectrogenic bacteria that power microbial fuel   [72]  ZHOU J (কᲝ), YANG M L (Ვᬻ㢶). Recent research progress in
                 cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381.     electrochemical preparation of MOF films[J]. Materials Reports (ᱽ
            [57]  SCHRÖDER  U. Anodic electron transfer mechanisms in  microbial   ᫆ᄩ្), 2020, 34(19): 19043-19049.
                 fuel cells and  their energy efficiency[J]. Physical Chemistry   [73]  KITAO T, ZHANG Y  Y, KITAGAWA S,  et al. Hybridization of
                 Chemical Physics, 2007, 9(21): 2619-2629.         MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11):
            [58]  ZHOU H, LIU L, YIN K, et al. Electrochemical investigation on the   3108-3133.
                 catalytic ability of tyrosinase with the effect of nano titanium   [74]  DAS I, NOORI M T, SHAIKH M, et al. Synthesis and application of
                 dioxide[J]. Electrochemistry Communications, 2006, 8(7): 1168-1172.     zirconium metal-organic framework in microbial fuel cells as a cost-
            [59]  YIN T, LIN Z Y, SU L, et al. Preparation of vertically oriented TiO 2   effective oxygen reduction catalyst with competitive performance[J].
                 nanosheets modified carbon paper electrode and its enhancement to   ACS Applied Energy Materials, 2020, 3(4): 3512-3520.
                 the performance of MFCs[J]. ACS Applied Materials & Interfaces,   [75]  XUE W  D,  ZHOU Q  X,  LI F X. The feasibility of typical
                 2015, 7(1): 400-408.                              metal-organic framework derived Fe,  Co, N co-doped carbon as a
            [60]  TANG J H, YUAN Y, LIU T,  et al. High-capacity carbon-coated   robust electrocatalyst for oxygen reduction reaction in microbial fuel
                 titanium dioxide core-shell nanoparticles modified three dimensional   cell[J]. Electrochimica Acta, 2020, 355: 136775.
                 anodes for improved energy output in microbial fuel cells[J]. Journal   [76]  ZHANG S, SU W, LI K X, et al. Metal organic framework-derived
                 of Power Sources, 2015, 274: 170-176.             Co 3O 4/NiCo 2O 4 double-shelled nanocage modified activated carbon
            [61]  SU L, YIN T, DU H G, et al. Synergistic improvement of Shewanella   air-cathode for improving power generation in microbial fuel cell[J].
                 loihica PV-4 extracellular electron transfer using a TiO 2@TiN   Journal of Power Sources, 2018, 396: 355-362.
                 nanocomposite[J]. Bioelectrochemistry, 2020, 134: 107519.     [77]  FAN M J, ZHANG  W, SUN J  Y,  et al. Different  modified
            [62]  ZHOU Y L, YANG Y, CHEN M, et al. To improve the performance   multi-walled carbon nanotube-based anodes to improve the
                 of sediment microbial fuel cell through amending colloidal iron   performance of  microbial fuel cells[J]. International Journal of
                 oxyhydroxide into freshwater sediments[J]. Bioresource Technology,   Hydrogen Energy, 2017, 42(36): 22786-22795.
                 2014, 159: 232-239.                           [78]  YE K, WANG L J, SONG H W, et al. Bifunctional MIL-53(Fe) with
            [63]  FENG C H, YUE X J, LI F B, et al. Bio-current as an indicator for   pyrophosphate-mediated peroxidase-like activity and  oxidation-
                 biogenic Fe (Ĕ) generation driven by  dissimilatory  iron  reducing   stimulated fluorescence switching for alkaline phosphatase detection[J].
                 bacteria[J]. Biosensors and Bioelectronics, 2013, 39(1): 51-56.     Journal of Materials Chemistry B, 2019, 7(31): 4794-4800.
            [64]  CHEN  Z, ZHANG Y X, LUO Q L,  et al. Maghemite (Ȗ-Fe 2O 3)   [79]  KAUR R, SINGH S, CHHABRA V A, et al. A sustainable approach
                 nanoparticles enhance dissimilatory ferrihydrite reduction by   towards  utilization of  plastic waste for an efficient electrode in
                 Geobacter sulfurreducens: Impacts on iron mineralogical change and   microbial fuel cell applications[J]. Journal of Hazardous  Materials,
                 bacterial interactions[J]. Journal  of Environmental Sciences, 2019,   2021, 417: 125992.
                 78: 193-203.                                  [80]  WANG J, LI B, WANG S P, et al. Metal-organic framework-derived
            [65]  LOWY D A, TENDER L M, ZEIKUS J G, et al. Harvesting energy   iron oxide modified carbon cloth as a high-power density microbial
                 from the marine sediment-water interface  Ĕ: Kinetic activity of   fuel cell anode[J]. Journal of Cleaner Production, 2022, 341: 130725.
                 anode materials[J]. Biosensors and Bioelectronics, 2006, 21(11):   [81]  XU H T, HUANG J X, LIN C G, et al. Bio-functional metal organic
                 2058-2063.                                        framework composite as bioanode for enhanced electricity generation
            [66]  PARK I H, CHRISTY M, KIM P, et al. Enhanced electrical contact   by a microbial fuel cell[J]. Electrochimica Acta, 2021, 368: 137622.
                 of microbes using Fe 3O 4/CNT nanocomposite anode in mediator-less   [82]  YU B,  LI Y H,  FENG L. Enhancing the performance of soil
   109   110   111   112   113   114   115   116   117   118   119