Page 115 - 《精细化工》2023年第4期
P. 115

す 4 ᱌                    㟼㉘㡳喑ぶ:  Ӱ䔈ᓛ⩌➖㘋ใ⩢ၽ䒙⼨⮱㏠ㆠᱽ᫆ⵁ⾣䔈ᆂ                                    g801g


                 microbial fuel cells by using a bentonite-Fe and Fe 3O 4 modified   4-ethylenedioxythiophene) and its derivatives: Past, present, and
                 anode[J]. Journal of Hazardous Materials, 2019, 377: 70-77.     future[J]. Advanced Materials, 2000, 12(7): 481-494.
            [83]  YANG Q Z, YANG S Q, LIU G L,  et al. Boosting the anode   [99]  ABIDIAN M R,  MARTIN D C.  Experimental and theoretical
                 performance of microbial fuel cells with a bacteria-derived biological   characterization of implantable neural microelectrodes modified with
                 iron oxide/carbon  nanocomposite catalyst[J]. Chemosphere, 2021,   conducting polymer nanotubes[J]. Biomaterials, 2008, 29(9):
                 268: 128800.                                      1273-1283.
            [84]  GNANA K G, KIRUBAHARAN C J, UDHAYAKUMAR S,  et al.   [100]  LIU X,  WU  W G, GU Z Z. Poly(3, 4-ethylenedioxythiophene)
                 Conductive polymer/graphene supported platinum nanoparticles as   promotes direct electron transfer at the interface between Shewanella
                 anode catalysts for the extended power generation of microbial fuel   loihica and the anode in a microbial fuel cell[J]. Journal of Power
                 cells[J]. Industrial & Engineering Chemistry Research, 2014, 53(43):   Sources, 2015, 277: 110-115.
                 16883-16893.                                  [101]  ZHONG D J, LIAO X  R,  LIU  Y Q,  et al. Quick start-up and
            [85]  GAO Z,  YANG W  L, WANG  J,  et al. A new partially reduced   performance  of  microbial  fuel  cell  enhanced  with  a
                 graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor   polydiallyldimethylammonium chloride  modified carbon felt
                 electrode material[J]. Energy & Fuels, 2013, 27(1): 568-575.     anode[J]. Biosensors and Bioelectronics, 2018, 119: 70-78.
            [86]  PU K B, MA Q, CAI W F, et al. Polypyrrole modified stainless steel   [102]  LIU Y F,  ZHANG X  L, ZHANG  Q  C,  et al. Microbial fuel cells:
                 as high performance anode of microbial fuel cell[J]. Biochemical   Nanomaterials based on anode and their application[J]. Energy
                 Engineering Journal, 2018, 132: 255-261.          Technology, 2020, 8(9): 2000206.
            [87]  XIA L, WEI Z X,  WAN M X. Conducting polymer nanostructures   [103]  ZHAO J K, FENG K, LU Y, et al. 3D pore-matched PANI@CNT
                 and their application in biosensors[J]. Journal of Colloid and   bioanode for efficient electron extraction from toluene[J]. Journal of
                 Interface Science, 2010, 341(1): 1-11.            Power Sources, 2022, 536: 231509.
            [88]  AKHEEL A S, MARAVATTICKAL K. Review: Polyaniline-A novel   [104]  ZHU W H, YAO M, GAO H X, et al. Enhanced extracellular electron
                 polymeric material [J]. Talanta, 1991, 38(8): 815-837.     transfer between  Shewanella putrefaciens and carbon felt electrode
            [89]  LI C, ZHANG L B, DING L L, et al. Effect of conductive polymers   modified by bio-reduced graphene oxide[J]. Science of the  Total
                 coated anode on the performance of microbial fuel cells (MFCs) and   Environment, 2019, 691: 1089-1097.
                 its  biodiversity analysis[J]. Biosensors and Bioelectronics, 2011,   [105]  ZOU L,  QIAO  Y,  WU X S,  et al. Tailoring hierarchically porous
                 26(10): 4169-4176.                                graphene architecture by carbon nanotube to accelerate extracellular
            [90]  DING C M, LIU H, ZHU Y, et al. Control of bacterial extracellular   electron transfer of anodic biofilm in microbial fuel cells[J]. Journal
                 electron transfer by a solid-state  mediator of polyaniline nanowire   of Power Sources, 2016, 328: 143-150.
                 arrays[J]. Energy & Environmental Science, 2012, 5(9): 8517-8522.     [106]  GANGADHARAN P, NAMBI I M,  SENTHILNATHAN J,  et al.
            [91]  HUANG L H, LI X F, REN Y P, et al. In-situ modified carbon cloth   Heterocyclic  aminopyrazine-reduced graphene oxide coated carbon
                 with polyaniline/graphene as anode  to enhance performance of   cloth electrode as an active bioelectrocatalyst for extracellular
                 microbial fuel cell[J]. International Journal of Hydrogen Energy,   electron transfer in  microbial fuel cells[J]. RSC Advances, 2016,
                 2016, 41(26): 11369-11379.                        6(73): 68827-68834.
            [92]  QIAO Y,  BAO S  J, LI C M,  et al. Nanostructured  polyaniline/   [107]  ZHANG C Y, LIANG P, JIANG Y, et al. Enhanced power generation
                 titanium dioxide composite anode for  microbial fuel cells[J]. ACS   of microbial fuel cell using manganese dioxide-coated anode in flow-
                 Nano, 2008, 2(1): 113-119.                        through mode[J]. Journal of Power Sources, 2015, 273: 580-583.
            [93]  XIAO Y H, CUI  X Y,  HANCOCK  J M,  et al. Electrochemical   [108]  JIA X Q, HE Z H, ZHANG X, et al. Carbon paper electrode modified
                 polymerization of poly (hydroxymethylated-3, 4-ethylenedioxythiophene)   with TiO 2 nanowires enhancement bioelectricity generation  in
                 (PEDOT-MeOH) on multichannel neural probes[J]. Sensors and   microbial fuel cell[J]. Synthetic Metals, 2016, 215: 170-175.
                 Actuators B: Chemical, 2004, 99(2/3): 437-443.     [109]  QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd
            [94]  ZOU Y J, XIANG C L, YANG L N, et al. A mediatorless microbial   nanoparticles improved power generation in microbial fuel cells[J].
                 fuel cell using polypyrrole coated carbon nanotubes composite as   Electrochimica Acta, 2015, 182: 815-820.
                 anode material[J]. International Journal of Hydrogen Energy, 2008,   [110]  YANG  L Q  Y, CHEN  Y, WEN Q,  et al. 2D layered structure-
                 33(18): 4856-4862.                                supported imidazole-based metal-organic framework for  enhancing
            [95]  FENG C H, MA L, LI F B,  et al. A  polypyrrole/anthraquinone-2,   the power generation performance of microbial fuel cells[J].
                 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve   Electrochimica Acta, 2022, 428: 140959.
                 performance of microbial fuel cells[J]. Biosensors and Bioelectronics,   [111]  HE Y T, YANG J N, FU Q, et al. Structure design of 3D hierarchical
                 2010, 25(6): 1516-1520.                           porous anode for high  performance  microbial fuel cells: From
            [96]  SONG  R  B, WU Y C, LIN Z  Q,  et al. Living and conducting:   macro-to micro-scale[J]. Journal of Power Sources, 2021, 516: 230687.
                 Coating individual bacterial cells with in situ formed polypyrrole[J].   [112]  WANG Y Y, ZHU L, AN L J. Electricity generation and storage in
                 Angewandte Chemie-International Edition, 2017, 56(35): 10516-10520.     microbial fuel cells with porous polypyrrole-base composite modified
            [97]  WANG  D L, PAN J Y, XU M,  et al. Surface  modification of   carbon brush anodes[J]. Renewable Energy, 2020, 162: 2220-2226.
                 Shewanella oneidensis MR-1 with polypyrrole-dopamine coating for   [113]  YONG Y C, DONG X C, CHAN-PARK M B, et al. Macroporous
                 improvement of power generation in microbial fuel cells[J]. Journal   and monolithic anode based on  polyaniline hybridized three-
                 of Power Sources, 2021, 483: 229220.              dimensional graphene for high-performance  microbial fuel cells[J].
            [98]  GROENENDAAL L, JONAS F,  FREITAG D,  et al. Poly(3,   ACS Nano, 2012, 6(3): 2394-2400.
   110   111   112   113   114   115   116   117   118   119   120