Page 115 - 《精细化工》2023年第4期
P. 115
す 4 㟼㉘㡳喑ぶ: Ӱ䔈ᓛ⩌➖㘋ใ⩢ၽ䒙⼨⮱㏠ㆠᱽ᫆ⵁ⾣䔈ᆂ g801g
microbial fuel cells by using a bentonite-Fe and Fe 3O 4 modified 4-ethylenedioxythiophene) and its derivatives: Past, present, and
anode[J]. Journal of Hazardous Materials, 2019, 377: 70-77. future[J]. Advanced Materials, 2000, 12(7): 481-494.
[83] YANG Q Z, YANG S Q, LIU G L, et al. Boosting the anode [99] ABIDIAN M R, MARTIN D C. Experimental and theoretical
performance of microbial fuel cells with a bacteria-derived biological characterization of implantable neural microelectrodes modified with
iron oxide/carbon nanocomposite catalyst[J]. Chemosphere, 2021, conducting polymer nanotubes[J]. Biomaterials, 2008, 29(9):
268: 128800. 1273-1283.
[84] GNANA K G, KIRUBAHARAN C J, UDHAYAKUMAR S, et al. [100] LIU X, WU W G, GU Z Z. Poly(3, 4-ethylenedioxythiophene)
Conductive polymer/graphene supported platinum nanoparticles as promotes direct electron transfer at the interface between Shewanella
anode catalysts for the extended power generation of microbial fuel loihica and the anode in a microbial fuel cell[J]. Journal of Power
cells[J]. Industrial & Engineering Chemistry Research, 2014, 53(43): Sources, 2015, 277: 110-115.
16883-16893. [101] ZHONG D J, LIAO X R, LIU Y Q, et al. Quick start-up and
[85] GAO Z, YANG W L, WANG J, et al. A new partially reduced performance of microbial fuel cell enhanced with a
graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor polydiallyldimethylammonium chloride modified carbon felt
electrode material[J]. Energy & Fuels, 2013, 27(1): 568-575. anode[J]. Biosensors and Bioelectronics, 2018, 119: 70-78.
[86] PU K B, MA Q, CAI W F, et al. Polypyrrole modified stainless steel [102] LIU Y F, ZHANG X L, ZHANG Q C, et al. Microbial fuel cells:
as high performance anode of microbial fuel cell[J]. Biochemical Nanomaterials based on anode and their application[J]. Energy
Engineering Journal, 2018, 132: 255-261. Technology, 2020, 8(9): 2000206.
[87] XIA L, WEI Z X, WAN M X. Conducting polymer nanostructures [103] ZHAO J K, FENG K, LU Y, et al. 3D pore-matched PANI@CNT
and their application in biosensors[J]. Journal of Colloid and bioanode for efficient electron extraction from toluene[J]. Journal of
Interface Science, 2010, 341(1): 1-11. Power Sources, 2022, 536: 231509.
[88] AKHEEL A S, MARAVATTICKAL K. Review: Polyaniline-A novel [104] ZHU W H, YAO M, GAO H X, et al. Enhanced extracellular electron
polymeric material [J]. Talanta, 1991, 38(8): 815-837. transfer between Shewanella putrefaciens and carbon felt electrode
[89] LI C, ZHANG L B, DING L L, et al. Effect of conductive polymers modified by bio-reduced graphene oxide[J]. Science of the Total
coated anode on the performance of microbial fuel cells (MFCs) and Environment, 2019, 691: 1089-1097.
its biodiversity analysis[J]. Biosensors and Bioelectronics, 2011, [105] ZOU L, QIAO Y, WU X S, et al. Tailoring hierarchically porous
26(10): 4169-4176. graphene architecture by carbon nanotube to accelerate extracellular
[90] DING C M, LIU H, ZHU Y, et al. Control of bacterial extracellular electron transfer of anodic biofilm in microbial fuel cells[J]. Journal
electron transfer by a solid-state mediator of polyaniline nanowire of Power Sources, 2016, 328: 143-150.
arrays[J]. Energy & Environmental Science, 2012, 5(9): 8517-8522. [106] GANGADHARAN P, NAMBI I M, SENTHILNATHAN J, et al.
[91] HUANG L H, LI X F, REN Y P, et al. In-situ modified carbon cloth Heterocyclic aminopyrazine-reduced graphene oxide coated carbon
with polyaniline/graphene as anode to enhance performance of cloth electrode as an active bioelectrocatalyst for extracellular
microbial fuel cell[J]. International Journal of Hydrogen Energy, electron transfer in microbial fuel cells[J]. RSC Advances, 2016,
2016, 41(26): 11369-11379. 6(73): 68827-68834.
[92] QIAO Y, BAO S J, LI C M, et al. Nanostructured polyaniline/ [107] ZHANG C Y, LIANG P, JIANG Y, et al. Enhanced power generation
titanium dioxide composite anode for microbial fuel cells[J]. ACS of microbial fuel cell using manganese dioxide-coated anode in flow-
Nano, 2008, 2(1): 113-119. through mode[J]. Journal of Power Sources, 2015, 273: 580-583.
[93] XIAO Y H, CUI X Y, HANCOCK J M, et al. Electrochemical [108] JIA X Q, HE Z H, ZHANG X, et al. Carbon paper electrode modified
polymerization of poly (hydroxymethylated-3, 4-ethylenedioxythiophene) with TiO 2 nanowires enhancement bioelectricity generation in
(PEDOT-MeOH) on multichannel neural probes[J]. Sensors and microbial fuel cell[J]. Synthetic Metals, 2016, 215: 170-175.
Actuators B: Chemical, 2004, 99(2/3): 437-443. [109] QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd
[94] ZOU Y J, XIANG C L, YANG L N, et al. A mediatorless microbial nanoparticles improved power generation in microbial fuel cells[J].
fuel cell using polypyrrole coated carbon nanotubes composite as Electrochimica Acta, 2015, 182: 815-820.
anode material[J]. International Journal of Hydrogen Energy, 2008, [110] YANG L Q Y, CHEN Y, WEN Q, et al. 2D layered structure-
33(18): 4856-4862. supported imidazole-based metal-organic framework for enhancing
[95] FENG C H, MA L, LI F B, et al. A polypyrrole/anthraquinone-2, the power generation performance of microbial fuel cells[J].
6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve Electrochimica Acta, 2022, 428: 140959.
performance of microbial fuel cells[J]. Biosensors and Bioelectronics, [111] HE Y T, YANG J N, FU Q, et al. Structure design of 3D hierarchical
2010, 25(6): 1516-1520. porous anode for high performance microbial fuel cells: From
[96] SONG R B, WU Y C, LIN Z Q, et al. Living and conducting: macro-to micro-scale[J]. Journal of Power Sources, 2021, 516: 230687.
Coating individual bacterial cells with in situ formed polypyrrole[J]. [112] WANG Y Y, ZHU L, AN L J. Electricity generation and storage in
Angewandte Chemie-International Edition, 2017, 56(35): 10516-10520. microbial fuel cells with porous polypyrrole-base composite modified
[97] WANG D L, PAN J Y, XU M, et al. Surface modification of carbon brush anodes[J]. Renewable Energy, 2020, 162: 2220-2226.
Shewanella oneidensis MR-1 with polypyrrole-dopamine coating for [113] YONG Y C, DONG X C, CHAN-PARK M B, et al. Macroporous
improvement of power generation in microbial fuel cells[J]. Journal and monolithic anode based on polyaniline hybridized three-
of Power Sources, 2021, 483: 229220. dimensional graphene for high-performance microbial fuel cells[J].
[98] GROENENDAAL L, JONAS F, FREITAG D, et al. Poly(3, ACS Nano, 2012, 6(3): 2394-2400.