Page 52 - 《精细化工》2023年第4期
P. 52
g738g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
㔰㭾⮱᭜ࣺᏁ➖Ⱕ⮱ٲܳ⌤व䬛䷅喑⌤वகহࣺᏁ now? Recent applications, challenges and limitations[J]. Chemical
க㟜❴⮱Ჱ䕍̻Ჱಸ᭜хٵ㔰㭾⮱㉍喠喍5喎䛴⩕ Communications, 2018, 54(99): 13894-13928.
[5] ZHANG Y (ᑍ䋰), ZHANG J (ᑍ㣮), GU S L (䓉䶧᳄), et al.
יࡃ≨ᕔ㏱ܳԛ亝⮱℈㏳ノᓛࣺᏁகजВ㼐۠㏼ڥ Ctinuous synthesis of nitroguanidine in micro-channel reactor[J].
℈㏳ノࣺᏁக̺㘪䔈㵹ధ-⋟ᝃ⅁-ధ-⋟็Ⱕיࡃࣺ Fine Chemicals (㏳ࡃጒ), 2016, 33(8): 946-950.
[6] SCHACHTNER J, BAYER P, VON WANGELIN A J. A flow reactor
Ꮑ⮱䬛䷅喑㔹́ᬍ䰭יࡃݯ⮱ܳ⻨喑ڣ͚䉌䒪יࡃ≨ setup for photochemistry of biphasic gas/liquid reactions[J]. Beilstein
ᕔ㏱ܳ⮱≨ᕔহ⽠Ⴧᕔ᭜хٵ㔰㭾⮱䬛䷅喠喍6喎ٲ Journal of Organic Chemistry, 2016, 12(1): 1798-1811.
ᎷࣺᏁக̷Όज䔈㵹ధ-⋟ᝃ⅁-ధ-⋟็Ⱕיࡃࣺ [7] MAKARSHIN L L, PAI Z P, PARMON V N. Microchannel systems
for fine organic synthesis[J]. Russian Chemical Reviews, 2016,
Ꮑ喑יࡃݯ⮱ٲ䰭䖬ٺ๔⮱ࢸ䭺䬛䷅喠喍7喎䮑γ 85(2): 115-139.
ࣺᏁ⍖ᏓȠࣺᏁࢸ߈Вใ喑⅁Ҁ≮䕌Ƞ⋟Ҁ≮䕌В [8] PENNEMANN H, KOLB G. Microstructured reactors as efficient
tool for the operation of selective oxidation reactions[J]. Catalysis
ࣷ։⪆ᬣ䬡Ό᭜㣤ᓄᓛ䕇䖀ࣺᏁக͚ⰥڠࣺᏁхࡃ
Today, 2016, 278: 3-21.
ጒ㞧⮱䛺㺮࣯ȡ [9] WATTS P, HASWELL S J. The application of micro reactors for
ᅪノᓛ䕇䖀ࣺᏁக䃫䃎ࣷڣౕऱㆨࣺᏁ͚⮱Ꮑ organic synthesis[J]. Chemical Society Reviews, 2005, 34(3): 235-
246.
⩕ःᓄγ㞜ສ⮱㐀喑ѳపڲ̻ప䭲ٵ䔈పუ⮱ⵁ [10] ZHANG J W (ᑍ㏼㏙), ZHOU Y W (কᐸᘌ), CHEN Z (䭵ࢀ), et
⾣ᅇႅ̭Ⴧ䌊⻨ȡపڲⵁ⾣็䯳͚λݖ⩕⣝ᰶᓛࣺ al. Advance in frontiers of organic synthesis in microreactor[J].
Ꮑகᩦ䔈ψϔ৮⮱वጒ㞧喑㔹㑧ͼ䃫䃎ȠᲱᐧ CIESC Journal (ࡃጒ႓្), 2022, 73(8): 3472-3482.
[11] FUKUYAMA T, KASAKADO T, HYODO M, et al. Improved
ಸᓛࣺᏁக⮱㘪߈̻ڡ䋐ȡ̭࣌᭜పڲ㑧ᄾ efficiency of photo-induced synthetic reactions enabled by advanced
ڤิᱧᷝȠ߈႓Ƞࡃጒহࡃ႓็႓ڞ㲺⮱ฺवಸ photo flow technologies[J]. Photochemical & Photobiological
Sciences, 2022, 21(5): 761-775.
ⵁ⾣ఏ䭌ȡ᱗Გ喑ᓛ䕇䖀ࣺᏁக⮱ⵁ⾣̻Ꮑ⩕ᏁⱭ
[12] GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow
ⱩλВ̸䲏喟喍1喎⩞λ̺हᱽ᫆⮱㶕䲏➦ᕔ̺ह喑 technology-A tool for the safe manufacturing of active pharmaceutical
ᓛ䕇䖀ڲ෮⮱㶕䲏➦ᕔज᭫㦄ᒞ৺≮Ҁߕ߈႓Ƞڲ䘕 ingredients[J]. Angewandte Chemie International Edition, 2015,
54(23): 6688-6728.
ᓗ⣜হэ䉕ᕔ㘪喑ₑ喑ౕ䃫䃎ᓛ䕇䖀ࣺᏁகᬣᏁ
[13] CHAMBERS R D, SPINK R C H. Microreactors for elemental
䶱ٵᄦ̺हᱽ᫆⮱㶕䲏ᕔ䉕䔈㵹䄓㏳ᣏ⾣喠喍2喎ౕ fluorine[J]. Chemical Communications, 1999, (10): 883-884.
⅁-⋟͑ⰥࣺᏁ⮱ጒ㞧ⵁ⾣͚喑䔶᠖व䔯⮱⏣ݯহ⅁ [14] CICHOWSKI D, ZHANG P, WOIAS P C, et al. Laser rapid-
prototyping and modular packaging of chip-based microreactors for
Ҁ䒪Ҁ᭜ᰭ䛺㺮⮱䬛䷅̭喑ₑ喑ⵁ⾣Ⱕڠ⋟Ҁ direct fluorination reactions[J]. Chemical Engineering Research and
হ⅁Ҁ⮱➖⤳ᕔ䉕喍叼ᏓȠ⩹䲏ᑍ߈ぶ喎जВ⣝ Design, 2017, 128: 318-330.
ᰡສ⮱ጒ㞧䃫䃎喠喍3喎⅁-⋟-⋟̶ⰥࣺᏁҀ㈨ౕᓛ [15] KOBAYASHI M, INOGUCHI T, IIDA T, et al. Development of
direct fluorination technology for application to materials for lithium
䕇䖀ࣺᏁக͚⮱倅᩵⌤व᭜ࣺᏁக䃫䃎⮱䛺㺮 battery[J]. Journal of Fluorine Chemistry, 2003, 120(2): 105-110.
ा喠喍4喎ᓛ䕇䖀ࣺᏁக͚㑀ᚏ㐀⮱ᬣ⯾≸̻ᷭ [16] KASAKADO T, FUKUYAMA T, NAKAGAWA T, et al. High-speed
CÿH chlorination of ethylene carbonate using a new photoflow
≸হ⌲䮑᭜᱗Გⵁ⾣হᏁ⩕̺㘪ఋ䖬⮱䬛䷅ȡ
setup[J]. Beilstein Journal of Organic Chemistry, 2022, 18(1): 152-
ₑใ喑В⊆͉⎃倅㗎Ъᰶ䭽ڙथᐭࣾ⮱ᓛ 158.
䕇䖀ࣺᏁக͚Ά☜ݖ㻱ࡃ⩌ϔጒ㞧হ⊆ዺࡻ [17] NEWMAN M S, ADDOR R W. Synthesis and reactions of vinylene
carbonate[J]. Journal of the American Chemical Society, 1955,
ᱽ᫆㗎Ъᰶ䭽ڙथ䛴⩕Ꭱ䕇䛼̴ॕ㏔⮱ᏤႮ G5 ᓛ
77(14): 3789-3793.
䕇䖀ࣺᏁகࣷノᐼࣺᏁக⣝䔋㐚ࡃ⩌ϔͧ㠰喑 [18] STIEG W E. Preparation of alpha-halo-alpha-aceto-butyrolactones:
ߍ䕌ᣕᎬᓛ䕇䖀ࣺᏁகౕ㏳ࡃጒ➦ݘ᭜ࡨ㢜͚䬡 US2932653A[P]. 1960-04-12.
[19] HAWKSLEY D, GRIFFIN D A, LEEPER F J. Synthesis of
Ҁव࢞䮖ጒ㞧͚⮱Ꮑ⩕喑⣝ࣺᏁȠܳⰥȠ㤰ःȠ 3-deazathiamine[J]. Journal of the Chemical Society, Perkin
≄⋑Ƞ㙞⏣হ㧥亼⮱ڕ䔋㐚㜗ߕࡃ⩌ϔ᭜ᒀߎᕒȡ Transactions 1, 2001, (2): 144-148.
ⰥԎ喑᱗Გᓛ䕇䖀ࣺᏁகౕ㏳ࡃ႓৮⩌ϔ͚⮱Ꮑ [20] JIANG M F, LIU M J, YU C, et al. Fully continuous flow synthesis
of 3-chloro-4-oxopentyl acetate: An important intermediate for
⩕ݺᮜٶᬻ喑㝋झᰡߍცᎬȡ vitamin B 1[J]. Organic Process Research & Development, 2021,
25(9): 2020- 2028.
࣯㔰᪴⡛喟 [21] EHRICH H, LINKE D, MORGENSCHWEIS K, et al. Application of
[1] YOSHIDA J, TAKAHASHI Y, NAGAKI A. Flash chemistry: Flow microstructured reactor technology for the photochemical
chemistry that cannot be done in batch[J]. Chemical Communications, chlorination of alkylaromatics[J]. Chimia, 2002, 56(11): 647.
2013, 49(85): 9896-9904. [22] FUKUYAMA T, KASAKADO T, HYODO M, et al. Improved
[2] JÄHNISCH K, HESSEL V, LÖWE H, et al. Chemistry in efficiency of photo-induced synthetic reactions enabled by advanced
microstructured reactors[J]. Angewandte Chemie International photo flow technologies[J]. Photochemical & Photobiological
Edition, 2004, 43(4): 406-446. Sciences, 2022, 21(5): 761-775.
[3] DENG J, ZHANG J S, WANG K, et al. Microreaction technology for [23] MESTRES R, PALENZUELA J. High atomic yield bromine-less
synthetic chemistry[J]. Chinese Journal of Chemistry, 2019, 37(2): benzylic bromination[J]. Green Chemistry, 2002, 4(4): 314-316.
161-170. [24] PODGORŠEK A, STAVBER S, ZUPAN M, et al. Free radical
[4] AKWI F M, WATTS P. Continuous flow chemistry: Where are we bromination by the H 2O 2-HBr system on water[J]. Tetrahedron