Page 52 - 《精细化工》2023年第4期
P. 52

g738g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

            㔰㭾⮱᭜ࣺᏁ➖Ⱕ⮱ٲܳ⌤व䬛䷅喑⌤वகহࣺᏁ                                 now? Recent applications, challenges and limitations[J]. Chemical
            க㟜❴⮱Ჱ䕍̻Ჱಸ᭜хٵ㔰㭾⮱఍㉍喠喍5喎䛴⩕                                Communications, 2018, 54(99): 13894-13928.
                                                               [5]   ZHANG Y (ᑍ䋰), ZHANG J (ᑍ㣮), GU S L (䓉䶧᳄),  et al.
            יࡃ≨ᕔ㏱ܳԛ亝⮱℈㏳ノᓛࣺᏁகजВ㼐۠㏼ڥ                                 Ctinuous synthesis of nitroguanidine in micro-channel reactor[J].
            ℈㏳ノࣺᏁக̺㘪䔈㵹ధ-⋟ᝃ⅁-ధ-⋟็Ⱕיࡃࣺ                               Fine Chemicals (㇫㏳ࡃጒ), 2016, 33(8): 946-950.
                                                               [6]   SCHACHTNER J, BAYER P, VON WANGELIN A J. A flow reactor
            Ꮑ⮱䬛䷅喑㔹́ᬍ䰭יࡃݯ⮱ܳ⻨喑ڣ͚䉌䒪יࡃ≨                                setup for photochemistry of biphasic gas/liquid reactions[J]. Beilstein
            ᕔ㏱ܳ⮱≨ᕔহ⽠Ⴧᕔ᭜хٵ㔰㭾⮱䬛䷅喠喍6喎඘ٲ                               Journal of Organic Chemistry, 2016, 12(1): 1798-1811.
            ᎷࣺᏁக̷Όज䔈㵹ధ-⋟ᝃ⅁-ధ-⋟็Ⱕיࡃࣺ                            [7]   MAKARSHIN L L, PAI Z P, PARMON V N. Microchannel systems
                                                                   for fine organic synthesis[J]. Russian Chemical Reviews, 2016,
            Ꮑ喑יࡃݯ⮱඘ٲ䰭䖬ٺ๔⮱ࢸ䭺䬛䷅喠喍7喎䮑γ                                85(2): 115-139.
            ࣺᏁ⍖ᏓȠࣺᏁࢸ߈Вใ喑⅁Ҁ≮䕌Ƞ⋟Ҁ≮䕌В                             [8]   PENNEMANN  H, KOLB  G.  Microstructured reactors as efficient
                                                                   tool for  the operation  of  selective oxidation reactions[J]. Catalysis
            ࣷ։⪆ᬣ䬡Ό᭜㣤ᓄᓛ䕇䖀ࣺᏁக͚ⰥڠࣺᏁхࡃ
                                                                   Today, 2016, 278: 3-21.
            ጒ㞧⮱䛺㺮࣯᪝ȡ                                           [9]   WATTS P, HASWELL S J. The application of micro reactors for
                 ᅪノᓛ䕇䖀ࣺᏁக䃫䃎ࣷڣౕऱㆨࣺᏁ͚⮱Ꮑ                              organic synthesis[J]. Chemical Society Reviews, 2005,  34(3):  235-
                                                                   246.
            ⩕ःᓄγ㞜ສ⮱㐀᳉喑ѳపڲ̻ప䭲ٵ䔈పუ⮱ⵁ                             [10]  ZHANG J W (ᑍ㏼㏙), ZHOU Y W (কᐸᘌ), CHEN Z (䭵ࢀ), et
            ⾣ᅇႅ̭Ⴧ䌊⻨ȡపڲⵁ⾣็䯳͚λݖ⩕⣝ᰶᓛࣺ                                 al. Advance in frontiers of  organic synthesis in microreactor[J].
            Ꮑகᩦ䔈᳽ψϔ৮⮱व᜽ጒ㞧喑㔹㑧ͼ䃫䃎ȠᲱᐧ                                 CIESC Journal (ࡃጒ႓្), 2022, 73(8): 3472-3482.
                                                               [11]  FUKUYAMA T,  KASAKADO T, HYODO M,  et al. Improved
            ᫝ಸᓛࣺᏁக⮱㘪߈̻ڡ䋐ȡ࣌఍͸̭᭜పڲ㑧ᄾ                                 efficiency of photo-induced synthetic reactions enabled by advanced
            ڤิᱧᷝȠ߈႓Ƞࡃጒহࡃ႓็႓⻾ڞ㲺⮱ฺवಸ                                 photo flow technologies[J]. Photochemical  & Photobiological
                                                                   Sciences, 2022, 21(5): 761-775.
            ⵁ⾣ఏ䭌ȡ᱗Გ喑ᓛ䕇䖀ࣺᏁக⮱ⵁ⾣̻Ꮑ⩕ᏁⱭ
                                                               [12]  GUTMANN  B, CANTILLO D, KAPPE C O.  Continuous-flow
            ⱩλВ̸᫦䲏喟喍1喎⩞λ̺हᱽ᫆⮱㶕䲏➦ᕔ̺ह喑                               technology-A tool for the safe manufacturing of active pharmaceutical
            ᓛ䕇䖀ڲ෮⮱㶕䲏➦ᕔज᭫㦄ᒞ৺≮Ҁߕ߈႓Ƞڲ䘕                                ingredients[J]. Angewandte Chemie International Edition, 2015,
                                                                   54(23): 6688-6728.
            ᓗ⣜হэ䉕ᕔ㘪喑఍ₑ喑ౕ䃫䃎᫝ᓛ䕇䖀ࣺᏁகᬣᏁ
                                                               [13]  CHAMBERS R D, SPINK R C  H.  Microreactors for  elemental
            䶱ٵᄦ̺हᱽ᫆⮱㶕䲏ᕔ䉕䔈㵹䄓㏳ᣏ⾣喠喍2喎ౕ                                fluorine[J]. Chemical Communications, 1999, (10): 883-884.
            ⅁-⋟͑ⰥࣺᏁ⮱ጒ㞧ⵁ⾣͚喑䔶᠖व䔯⮱⏣ݯহ⅁                            [14]  CICHOWSKI D,  ZHANG P, WOIAS P C,  et al. Laser rapid-
                                                                   prototyping and modular packaging of chip-based microreactors for
            Ҁ䒪Ҁ᭜ᰭ䛺㺮⮱䬛䷅͸̭喑఍ₑ喑ⵁ⾣Ⱕڠ⋟Ҁ                                 direct fluorination reactions[J]. Chemical Engineering Research and
            হ⅁Ҁ⮱➖⤳ᕔ䉕喍叼ᏓȠ⩹䲏ᑍ߈ぶ喎जВ჋⣝                                 Design, 2017, 128: 318-330.
            ᰡສ⮱ጒ㞧䃫䃎喠喍3喎⅁-⋟-⋟̶ⰥࣺᏁҀ㈨ౕᓛ                           [15]  KOBAYASHI M, INOGUCHI T, IIDA T,  et al. Development of
                                                                   direct fluorination technology for application to materials for lithium
            䕇䖀ࣺᏁக͚⮱倅᩵⌤व᭜ࣺᏁக䃫䃎⮱䛺㺮᫦                                  battery[J]. Journal of Fluorine Chemistry, 2003, 120(2): 105-110.
            ा喠喍4喎ᓛ䕇䖀ࣺᏁக͚㑀ᚏ㐀೏⮱჋ᬣ⯾≸̻ᷭ                            [16]  KASAKADO T, FUKUYAMA T, NAKAGAWA T, et al. High-speed
                                                                   CÿH chlorination of ethylene carbonate using a new photoflow
            ≸হ⌲䮑᭜᱗Გⵁ⾣হᏁ⩕̺㘪ఋ䖬⮱䬛䷅ȡ
                                                                   setup[J]. Beilstein Journal of Organic Chemistry, 2022, 18(1): 152-
                 ₑใ喑В⊆↌͉⎃倅⻾㗎Ъᰶ䭽ڙथᐭࣾ⮱ᓛ                              158.
            䕇䖀ࣺᏁக͚Ά☜ݖ㻱὎ࡃ⩌ϔጒ㞧হ⊆↌ዺࡻ᫝                             [17]  NEWMAN M S, ADDOR R W. Synthesis and reactions of vinylene
                                                                   carbonate[J]. Journal of the American Chemical Society, 1955,
            ᱽ᫆㗎Ъᰶ䭽ڙथ䛴⩕Ꭱ䕇䛼̴ॕ㏔⮱ᏤႮ G5 ᓛ
                                                                   77(14): 3789-3793.
            䕇䖀ࣺᏁகࣷノᐼࣺᏁக჋⣝䔋㐚ࡃ⩌ϔͧ⹧㠰喑                             [18]  STIEG W E. Preparation  of alpha-halo-alpha-aceto-butyrolactones:
            ߍ䕌ᣕᎬᓛ䕇䖀ࣺᏁகౕ㇫㏳ࡃጒ➦ݘ᭜ࡨ㢜͚䬡                                 US2932653A[P]. 1960-04-12.
                                                               [19]  HAWKSLEY D,  GRIFFIN D A, LEEPER F J. Synthesis of
            Ҁव᜽࢞䮖ጒ㞧͚⮱Ꮑ⩕喑჋⣝ࣺᏁȠܳⰥȠ㤰ःȠ                                3-deazathiamine[J]. Journal  of the Chemical Society, Perkin
            ≄⋑Ƞ㙞⏣হ㧥亼⮱ڕ䔋㐚㜗ߕࡃ⩌ϔ᭜ᒀߎ͸ᕒȡ                                Transactions 1, 2001, (2): 144-148.
            ⰥԎ喑᱗Გᓛ䕇䖀ࣺᏁகౕ㇫㏳ࡃ႓৮⩌ϔ͚⮱Ꮑ                             [20]  JIANG M F, LIU M J, YU C, et al. Fully continuous flow synthesis
                                                                   of 3-chloro-4-oxopentyl acetate: An important intermediate for
            ⩕ݺᮜٶᬻ喑㝋झᰡߍცᎬȡ                                          vitamin B 1[J]. Organic Process Research & Development, 2021,
                                                                   25(9): 2020- 2028.
            ࣯㔰᪴⡛喟                                              [21]  EHRICH H, LINKE D, MORGENSCHWEIS K, et al. Application of
            [1]   YOSHIDA J, TAKAHASHI Y, NAGAKI A. Flash chemistry: Flow   microstructured reactor technology for the photochemical
                 chemistry that cannot be done in batch[J]. Chemical Communications,   chlorination of alkylaromatics[J]. Chimia, 2002, 56(11): 647.
                 2013, 49(85): 9896-9904.                      [22]  FUKUYAMA T,  KASAKADO T, HYODO M,  et al. Improved
            [2]   JÄHNISCH K,  HESSEL V, LÖWE H, et al. Chemistry in   efficiency of photo-induced synthetic reactions enabled by advanced
                 microstructured reactors[J]. Angewandte Chemie International   photo flow technologies[J]. Photochemical  & Photobiological
                 Edition, 2004, 43(4): 406-446.                    Sciences, 2022, 21(5): 761-775.
            [3]   DENG J, ZHANG J S, WANG K, et al. Microreaction technology for   [23]  MESTRES R,  PALENZUELA J. High atomic yield  bromine-less
                 synthetic chemistry[J]. Chinese Journal of Chemistry, 2019,  37(2):   benzylic bromination[J]. Green Chemistry, 2002, 4(4): 314-316.
                 161-170.                                      [24]  PODGORŠEK A,  STAVBER S,  ZUPAN M,  et al. Free radical
            [4]   AKWI F M, WATTS P. Continuous flow chemistry: Where are we   bromination by the H 2O 2-HBr system on water[J].  Tetrahedron
   47   48   49   50   51   52   53   54   55   56   57