Page 53 - 《精细化工》2023年第4期
P. 53
す 4 ᑍუᏤ喑ぶ: ᓛ䕇䖀ࣺᏁக͚㏳ࡃ႓৮व࢞䮖ጒ㞧ⵁ⾣䔈ᆂ g739g
Letters, 2006, 47(40): 7245-7247. Chemistry & Engineering, 2017, 5(6): 4811-4819.
[25] GHAFFARZADEH M, BOLOURTCHIAN M, TABAR-HEYDAR [43] ZHAO H L, LIU S E, SHANG M J, et al. Direct oxidation of
K, et al. H 2O 2-HBr: A metal-free and organic solvent-free reagent benzene to phenol in a microreactor: Process parameters and reaction
system for the synthesis of arylaldehydes from methylarenes[J]. kinetics study[J]. Chemical Engineering Science, 2021, 246: 116907.
Journal of Chemical Sciences, 2009, 121(2): 177-182. [44] ZHOU L L (ক᳄ݖ), ZHANG Y (ᑍ䋰), LOU X Y (༱ૉ㥒), et al.
[26] JU J, LI Y J, GAO J R, et al. High selectively oxidative bromination Preparation of glyoxylic acid via oxidation of acrylic acid by
of toluene derivatives by the H 2O 2-HBr system[J]. Chinese Chemical hydrogen peroxide in microreactor[J]. Modern Chemical Industry (⣝
Letters, 2011, 22(4): 382-384. Аࡃጒ), 2021, 41(12): 165-169.
[27] LIU L, LIU P, ZHANG D, et al. Photocatalytic oxidative [45] ROSENAU T, POTTHAST A, SIXTA H, et al. The chemistry of side
bromination of 2,6-dichlorotoluene to 2,6-dichlorobenzyl bromide in reactions and byproduct formation in the system NMMO/cellulose
a microchannel reactor[J]. ACS Omega, 2022, 7(5): 4624-4629. (Lyocell process)[J]. Progress in Polymer Science, 2001, 26(9):
[28] DENG Q L, SHEN R W, DING R, et al. Bromination of aromatic 1763-1837.
compounds using bromine in a microreactor[J]. Chemical [46] MURATA A, TSUCHIYA S, KONNO A. Process for producing
Engineering & Technology, 2016, 39(8): 1445-1450. amineoxide: US4247480A[P]. 1981-01-27.
[29] WOYDZIAK Z R, FU L, PETERSON B R. Synthesis of fluorinated [47] BALAGAM B, RICHARDSON D E. The mechanism of carbon
benzophenones, xanthones, acridones, and thioxanthones by iterative dioxide catalysis in the hydrogen peroxide N-oxidation of amines[J].
nucleophilic aromatic substitution[J]. The Journal of Organic Inorganic Chemistry, 2008, 47(3): 1173-1178.
Chemistry, 2012, 77(1): 473-481. [48] BAUMEISTER T, ZIKELI S, KITZLER H, et al. Continuous flow
[30] PAN X H, YU W S, OU W H, et al. Synthesis of a chiral ȕ-amino synthesis of amine oxides by oxidation of tertiary amines[J].
acid derivative by a cobalt-catalysed coupling reaction[J]. Journal of Reaction Chemistry & Engineering, 2019, 4(7): 1270-1276.
Chemical Research, 2011, 35(9): 545-546. [49] OGER N, LE GROGNEC E, FELPIN F X. Handling diazonium salts
[31] HU A J, LÜ C X, WANG H Y, et al. Selective oxidation of in flow for organic and material chemistry[J]. Organic Chemistry
p-chlorotoluene with Co(OAc) 2/MnSO 4/KBr in acetic acid-water Frontiers, 2015, 2(5): 590-614.
medium[J]. Catalysis Communications, 2007, 8(8): 1279-1283. [50] MO F Y, DONG G B, ZHANG Y, et al. Recent applications of arene
[32] HU A J, LÜ C X, LI B D, et al. Selective oxidation of diazonium salts in organic synthesis[J]. Organic & Biomolecular
p-chlorotoluene catalyzed by Co/Mn/Br in acetic acid-water Chemistry, 2013, 11(10): 1582-1593.
medium[J]. Industrial & Engineering Chemistry Research, 2006, [51] DENG Q L, LEI Q, SHEN R W C, et al. The continuous kilogram-
45(16): 5688-5692. scale process for the synthesis of 2,4,5-trifluorobromobenzene via
[33] YANG L J, LIU P, ZHANG H Y, et al. Catalytic oxidation of gattermann reaction using microreactors[J]. Chemical Engineering
o-chlorotoluene with oxygen to o-chlorobenzaldehyde in a Journal, 2017, 313: 1577-1582.
microchannel reactor[J]. Organic Process Research & Development, [52] LIU Y, ZENG C F, WANG C Q, et al. Continuous diazotization of
2020, 24(10): 2034-2042. aromatic amines with high acid and sodium nitrite concentrations in
[34] LIU J Y, ZHANG Y Y, YAN X D, et al. Selective oxidation of microreactors[J]. Journal of Flow Chemistry, 2018, 8(3): 139-146.
o-chlorotoluene to o-chlorobenzaldehyde catalyzed by (Co, Mn)(Co, [53] REN J, WU M, DONG K, et al. Highly efficient synthesis and
Mn) 2O 4 catalysts[J]. The Canadian Journal of Chemical Engineering, application of aryl diazonium salts via femtosecond laser-tailored 3D
2018, 96(8): 1746-1751. flow microfluidic chips[J]. Chinese Chemical Letters, 2023, 34(4):
[35] INGWALSON R W, LEDFORD N D. Process for preparing 107694.
ortho-chlorobenzaldehyde: US3624157A[P]. 1971-11-30. [54] WANG F J, HUANG J P, XU J H. Continuous-flow synthesis of azo
[36] WANG Z H (⢸͚䆗), YANG L J (Ვݖ), ZHANG Y C (ᑍᰵ), dyes in a microreactor system[J]. Chemical Engineering and
et al. Kinetics selective oxidation of o-chlorotoluene to Processing-Process Intensification, 2018, 127: 43-49.
o-chlorobenzaldehyde in a microchannel reactor[J]. Speciality [55] ZHANG S F, LIANG D. Method for preparing water-soluble azo dye
Petrochemicals (㏳ⴠ⇦ࡃጒ), 2021, 38(2): 24-30. continuously by chaos mixing of spiral tube: CN102618063A[P].
[37] YUN L, ZHAO J N, TANG X F, et al. Selective oxidation of 2012-08-01.
3
benzylic sp CÿH bonds using molecular oxygen in a continuous- [56] SHUKLA C A, KUTE M S, KULKARNI A A. Towards sustainable
flow microreactor[J]. Organic Process Research & Development, continuous production of azo dyes: Possibilities and techno-
2021, 25(7): 1612-1618. economic analysis[J]. Green Chemistry, 2021, 23(17): 6614-6624.
[38] MARTIN A, KALEVARU V N. Heterogeneously catalyzed [57] WANG F J, HUANG J P, XU J H. Continuous-flow synthesis of the
ammoxidation: A valuable tool for one-step synthesis of nitriles[J]. azo pigment yellow 14 using a three-stream micromixing process[J].
ChemCatChem, 2010, 2(12): 1504-1522. Organic Process Research & Development, 2019, 23(12): 2637-2646.
[39] WEI M X, MA H R, LU Q L, et al. Continuous-flow ammoxidation [58] WANG F J, DING Y C, XU J H. Continuous-flow synthesis of pigment
of 2-methylpyrazine to 2-cyanopyrazine with high space-time yield red 146 in a microreactor system[J]. Industrial & Engineering
in a microreactor[J]. ACS Omega, 2022, 7(10): 8980-8987. Chemistry Research, 2019, 58(36): 16338-16347.
[40] GOYAL R, SINGH O, AGRAWAL A, et al. Advantages and [59] SHI Z P, WANG X D, YIN D F, et al. High-flux continuous-flow
limitations of catalytic oxidation with hydrogen peroxide: From bulk synthesis of C.I. pigment yellow 12 from clear alkaline solutions of
chemicals to lab scale process[J]. Catalysis Reviews, 2022, 64(2): the coupling component[J]. Organic Process Research &
229-285. Development, 2021, 26(3): 661-669.
[41] BASYACH P, GUHA A K, BORTHAKUR S, et al. Efficient [60] KULKARNI A A. Continuous flow nitration in miniaturized
hydroxylation of benzene to phenol by H 2O 2 using Ni-doped CuWO 4 devices[J]. Beilstein Journal of Organic Chemistry, 2014, 10(1):
on carbon nitride as a catalyst under solar irradiation and its 405-424.
structure-activity correlation[J]. Journal of Materials Chemistry A, [61] HUGHES D L. Applications of flow chemistry in the pharmaceutical
2020, 8(25): 12774-12789. industry-highlights of the recent patent literature[J]. Organic Process
[42] AL-SABAGH A M, YEHIA F Z, ESHAQ G, et al. Eclectic Research & Development, 2020, 24(10): 1850-1860.
hydroxylation of benzene to phenol using ferrites of Fe and Zn as [62] ZENG L Y (ᰫͪ࿈), MAO M Z (℈ᬻ⣺), WANG W (⢸༮), et al.
durable and magnetically retrievable catalysts[J]. ACS Sustainable Application of microreactors in nitration[J]. Chemical Reagents (ࡃ