Page 189 - 《精细化工》2023年第6期
P. 189
第 6 期 崔坤成,等: 高分散 Pd/Ni-A-CA 纳米催化剂催化喹啉加氢 ·1339·
加氢,持续 5 次循环后仍具有良好的催化效果。 [17] TANG Y, CUI K C, LI Y Q, et al. Mild-temperature chemoselective
hydrogenation of cinnamaldehyde over amorphous Pt/Fe-Asp-A
nanocatalyst with enhanced stability[J]. Colloids and Surfaces A:
参考文献:
Physicochemical and Engineering Aspects, 2022, 654: 130106.
[18] DU Y R, LI X Q, LV X J, et al. Highly sensitive and selective
[1] MUNOZ A, SOJO F, ARENAS D, et al. Cytotoxic effects of new sensing of free Bilirubin using metal-organic frameworks-based
trans-2,4-diaryl-r-3-methyl-1,2,3,4-tetrahydroquinolines and their energy transfer process[J]. ACS Applied Materials & Interfaces,
interaction with antitumoral drugs gemcitabine and paclitaxel on 2017, 9(36): 30925-30932.
cellular lines of human breast cancer[J]. Chemico-Biological Interactions, [19] AZHAR M R, VIJAY P, TADE M O, et al. Submicron sized
2011, 189(3): 215-221. water-stable metal organic framework (bio-MOF-11) for catalytic
[2] OUYANG Y Q, ZOU W S, PENG L, et al. Design, synthesis, degradation of pharmaceuticals and personal care products[J].
antiproliferative activity and docking studies of quinazoline Chemosphere, 2018, 196: 105-114.
derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline [20] CHEN R F, YAO Z X, HAN N, et al. Insights into the adsorption of
as potential EGFR inhibitors[J]. European Journal of Medicinal VOCs on a cobalt-adeninate metal-organic framework
Chemistry, 2018, 154: 29-43. (Bio-MOF-11)[J]. ACS Omega, 2020, 5(25): 15402-15408.
[3] WANG X F, WANG S B, OHKOSHI E, et al. N-Aryl-6- [21] FENG C, QIAO S S, GUO Y, et al. Adenine-assisted synthesis of
methoxy-1,2,3,4-tetrahydroquinolines: A novel class of antitumor functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced
agents targeting the colchicine site on tubulin[J]. European Journal catalytic activity for the cycloaddition of carbon dioxide[J]. Colloids
Medicinal Chemistry, 2013, 67: 196-207. and Surfaces A: Physicochemical and Engineering Aspects, 2020,
[4] ZHANG S, XIA Z M, NI T, et al. Strong electronic metal-support 597: 124781.
interaction of Pt/CeO 2 enables efficient and selective hydrogenation [22] LENG F Q, GERBER I, AXET M, et al. Selectivity shifts in
of quinolines at room temperature[J]. Journal of Catalysis, 2018, 359: hydrogenation of cinnamaldehyde on electron-deficient ruthenium
101-111. nanoparticles[J]. Comptes Rendus Chimie, 2018, 21(3/4): 346-353.
[5] LI K, HAO B C, XIAO M, et al. Encapsulated metal catalyst for [23] SU J N (苏佳娜), GUO X Z (郭秀枝), WANG G Y (王公应), et al.
selective hydrogenation of quinoline under atmospheric conditions[J]. Catalytic hydrogenation of dimethyl terephthalate to dimethyl
Applied Surface Science, 2019, 478: 176-182. 1,4-cyclohexanedicarboxylate over Ru/CN catalyst[J]. Fine
[6] ZHANG Y, ZHU J, XIA Y T, et al. Efficient hydrogenation of Chemicals (精细化工), 2021, 38(7): 1505-1513.
nitrogen heterocycles catalyzed by carbon-metal covalent bonds- [24] GUO J L, LIANG Y H, LIU L, et al. Noble-metal-free CdS/Ni-MOF
stabilized palladium nanoparticles: Synergistic effects of particle size composites with highly efficient charge separation for photocatalytic
and water[J]. Advanced Synthesis & Catalysis, 2016, 358(19): H 2 evolution[J]. Applied Surface Science, 2020, 522: 146356.
3039-3045.
[7] ZHANG F W, MA C L, CHEN S, et al. N-doped hierarchical porous [25] ZHOU X K (周雪珂), ZHOU Z Y (周志颖), ZHOU C (周灿), et al.
carbon anchored tiny Pd NPs: A mild and efficient quinolines Solvent-free hydrogenation of nitrobenzene to aniline catalyzed by
selective hydrogenation catalyst[J]. Molecular Catalysis, 2018, 452: Pd/rGO[J]. Fine Chemicals (精细化工), 2022, 39(1): 127-134.
145-153. [26] REN Y S, WANG Y X, LI X, et al. Selective hydrogenation of
[8] FENG S Q, SONG X G, LIU Y, et al. In situ formation of quinolines into 1,2,3,4-tetrahydroquinolines over a nitrogen-doped
mononuclear complexes by reaction-induced atomic dispersion of carbon-supported Pd catalyst[J]. New Journal of Chemistry, 2018,
supported noble metal nanoparticles[J]. Nature Communications, 42(20): 16694-16702.
2019, 10(1): 1-9. [27] MAO H, CHEN C, LIAO X P, et al. Catalytic hydrogenation of
[9] WANG H W, GU X K, ZHENG X S, et al. Disentangling the quinoline over recyclable palladium nanoparticles supported on
size-dependent geometric and electronic effects of palladium tannin grafted collagen fibers[J]. Journal of Molecular Catalysis A:
nanocatalysts beyond selectivity[J]. Science Advances, 2019, 5(1): Chemical, 2011, 341(1/2): 51-56.
6413-6421. [28] HU X, CHEN Y Q, HUANG B B, et al. Pd-supported N/S-codoped
[10] DU W C, CHEN G Z, NIE R F, et al. Highly dispersed Pt in MIL-101: graphene-like carbons boost quinoline hydrogenation activity[J].
An efficient catalyst for the hydrogenation of nitroarenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11369-11376.
Catalysis Communications, 2013, 41: 56-59. [29] YANG X W (杨晓魏), XIA Z H (夏张辉), WANG T (王涛), et al.
[11] ZHAO Y, LIU M M, FAN B B, et al. Pd nanoparticles supported on Catalytic performance of highly dispersed nickel-silica catalysts in
ZIF-8 as an efficient heterogeneous catalyst for the selective quinoline hydrogenation[J]. Fine Chemicals (精细化工), 2020,
hydrogenation of cinnamaldehyde[J]. Catalysis Communications, 37(2): 309-316.
2014, 57: 119-123. [30] LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al.
[12] MIKHEEVA N N, ZAIKOVSKII V I, MAMONTOV G V. Synthesis Synthesis of pyrrolidone compounds via reductive amination of
of ceria nanoparticles in pores of SBA-15: Pore size effect and levulinic acid with nitriles over Pd catalysts[J]. Fine Chemicals (精细
influence of citric acid addition[J]. Microporous and Mesoporous 化工), 2021, 38(12): 2531-2538.
Materials, 2019, 277(1): 10-16. [31] FISH R H, THORMODSEN A D, CREMER G A. Homogeneous
[13] GUO X C, WANG X C, GUAN J, et al. Selective hydrogenation of catalytic hydrogenation. 1. Regiospecific reductions of polynuclear
D-glucose to D-sorbitol over Ru/ZSM-5 catalysts[J]. Chinese Journal aromatic and polynuclear heteroaromatic nitrogen compounds
of Catalysis, 2014, 35(5): 733-740. catalyzed by transition metal carbonyl hydrides[J]. Journal of the
[14] BERGMANN A, MARTINEZ E, TESCHNER D, et al. Reversible American Chemical Society, 1982, 104(39): 5234-5237.
amorphization and the catalytically active state of crystalline Co 3O 4 [32] ZHANG L, WANG X Y, XUE Y, et al. Cooperation between the
during oxygen evolution[J]. Nature Communications, 2015, 6: 1-9.
[15] LIU J Z, NAI J W, YOU T T, et al. The flexibility of an amorphous surface hydroxyl groups of Ru-SiO 2@mSiO 2 and water for good
cobalt hydroxide nanomaterial promotes the electrocatalysis of catalytic performance for hydrogenation of quinoline[J]. Catalysis
oxygen evolution reaction[J]. Small, 2018, 14: 1703514. Science & Technology, 2014, 4(7): 1939-1948.
[16] WANG B Y, YAN X M, ZHANG X Y, et al. Citric acid-modified [33] WANG B B, PAN H J, LU X H, et al. Copper-organic framework-
beta zeolite for polyoxymethylene dimethyl ethers synthesis: The derived porous nanorods for chemoselective hydrogenation of
textural and acidic properties regulation[J]. Applied Catalysis B: quinoline compounds at an aqueous/oil interface[J]. ACS Applied
Environmental, 2020, 266: 118645. Nano Materials, 2021, 4(11): 11779-11790.