Page 189 - 《精细化工》2023年第6期
P. 189

第 6 期                    崔坤成,等:  高分散 Pd/Ni-A-CA 纳米催化剂催化喹啉加氢                             ·1339·


            加氢,持续 5 次循环后仍具有良好的催化效果。                            [17]  TANG Y, CUI K C, LI Y Q, et al. Mild-temperature chemoselective
                                                                   hydrogenation of cinnamaldehyde  over  amorphous Pt/Fe-Asp-A
                                                                   nanocatalyst with enhanced stability[J]. Colloids and Surfaces A:
            参考文献:
                                                                   Physicochemical and Engineering Aspects, 2022, 654: 130106.
                                                               [18]  DU  Y  R, LI X Q, LV X J,  et al.  Highly sensitive and selective
            [1]   MUNOZ A, SOJO F, ARENAS D, et al. Cytotoxic effects of new   sensing of free Bilirubin using metal-organic frameworks-based
                 trans-2,4-diaryl-r-3-methyl-1,2,3,4-tetrahydroquinolines and  their   energy transfer process[J]. ACS Applied Materials & Interfaces,
                 interaction with antitumoral drugs gemcitabine and paclitaxel on   2017, 9(36): 30925-30932.
                 cellular lines of human breast cancer[J]. Chemico-Biological Interactions,   [19]  AZHAR M R,  VIJAY P,  TADE M O,  et al. Submicron sized
                 2011, 189(3): 215-221.                            water-stable metal  organic framework (bio-MOF-11) for catalytic
            [2]   OUYANG Y Q, ZOU  W  S,  PENG L,  et al. Design, synthesis,   degradation of pharmaceuticals and personal care products[J].
                 antiproliferative activity and docking studies of quinazoline   Chemosphere, 2018, 196: 105-114.
                 derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline   [20]  CHEN R F, YAO Z X, HAN N, et al. Insights into the adsorption of
                 as potential EGFR inhibitors[J]. European Journal of Medicinal   VOCs  on  a  cobalt-adeninate  metal-organic  framework
                 Chemistry, 2018, 154: 29-43.                      (Bio-MOF-11)[J]. ACS Omega, 2020, 5(25): 15402-15408.
            [3]   WANG  X F,  WANG S  B, OHKOSHI E, et  al.  N-Aryl-6-   [21]  FENG C, QIAO S S, GUO Y, et  al.  Adenine-assisted synthesis of
                 methoxy-1,2,3,4-tetrahydroquinolines:  A novel class of  antitumor   functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced
                 agents targeting the colchicine site on tubulin[J]. European Journal   catalytic activity for the cycloaddition of carbon dioxide[J]. Colloids
                 Medicinal Chemistry, 2013, 67: 196-207.           and Surfaces A: Physicochemical and Engineering Aspects, 2020,
            [4]   ZHANG S, XIA  Z M, NI T,  et al. Strong electronic metal-support   597: 124781.
                 interaction of Pt/CeO 2 enables efficient and selective hydrogenation   [22]  LENG F Q, GERBER I, AXET M,  et al. Selectivity shifts in
                 of quinolines at room temperature[J]. Journal of Catalysis, 2018, 359:   hydrogenation of cinnamaldehyde on  electron-deficient ruthenium
                 101-111.                                          nanoparticles[J]. Comptes Rendus Chimie, 2018, 21(3/4): 346-353.
            [5]   LI K, HAO  B C,  XIAO M,  et al. Encapsulated metal  catalyst for   [23]  SU J N (苏佳娜), GUO X Z (郭秀枝), WANG G Y (王公应), et al.
                 selective hydrogenation of quinoline  under  atmospheric  conditions[J].   Catalytic hydrogenation of dimethyl terephthalate to dimethyl
                 Applied Surface Science, 2019, 478: 176-182.      1,4-cyclohexanedicarboxylate  over  Ru/CN  catalyst[J].  Fine
            [6]   ZHANG Y, ZHU  J, XIA  Y T, et al. Efficient hydrogenation of   Chemicals (精细化工), 2021, 38(7): 1505-1513.
                 nitrogen  heterocycles catalyzed by carbon-metal  covalent bonds-   [24]  GUO J L, LIANG Y H, LIU L, et al. Noble-metal-free CdS/Ni-MOF
                 stabilized palladium nanoparticles: Synergistic effects of particle size   composites with highly efficient charge separation for photocatalytic
                 and water[J]. Advanced Synthesis  & Catalysis, 2016, 358(19):   H 2 evolution[J]. Applied Surface Science, 2020, 522: 146356.
                 3039-3045.
            [7]   ZHANG F W, MA C L, CHEN S, et al. N-doped hierarchical porous   [25]  ZHOU X K (周雪珂), ZHOU Z Y (周志颖), ZHOU C (周灿), et al.
                 carbon anchored tiny Pd NPs: A mild and efficient  quinolines   Solvent-free hydrogenation of  nitrobenzene to aniline catalyzed by
                 selective hydrogenation catalyst[J]. Molecular Catalysis, 2018, 452:   Pd/rGO[J]. Fine Chemicals (精细化工), 2022, 39(1): 127-134.
                 145-153.                                      [26]  REN Y S,  WANG Y X,  LI X,  et al. Selective hydrogenation of
            [8]   FENG S Q, SONG X G, LIU Y,  et al.  In situ  formation of   quinolines into 1,2,3,4-tetrahydroquinolines over a nitrogen-doped
                 mononuclear complexes by reaction-induced atomic dispersion of   carbon-supported Pd catalyst[J]. New  Journal of Chemistry, 2018,
                 supported noble metal nanoparticles[J]. Nature Communications,   42(20): 16694-16702.
                 2019, 10(1): 1-9.                             [27]  MAO H,  CHEN C, LIAO X P,  et al. Catalytic hydrogenation of
            [9]   WANG H W, GU X K,  ZHENG X S,  et al. Disentangling the   quinoline over recyclable palladium nanoparticles supported on
                 size-dependent  geometric  and electronic effects of palladium   tannin grafted collagen fibers[J]. Journal of Molecular Catalysis A:
                 nanocatalysts beyond selectivity[J]. Science Advances, 2019, 5(1):   Chemical, 2011, 341(1/2): 51-56.
                 6413-6421.                                    [28]  HU X, CHEN Y Q, HUANG B B, et al. Pd-supported N/S-codoped
            [10]  DU W C, CHEN G Z, NIE R F, et al. Highly dispersed Pt in MIL-101:   graphene-like  carbons boost quinoline  hydrogenation activity[J].
                 An efficient catalyst for the hydrogenation of nitroarenes[J].   ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11369-11376.
                 Catalysis Communications, 2013, 41: 56-59.    [29]  YANG X W (杨晓魏), XIA Z H (夏张辉), WANG T (王涛), et al.
            [11]  ZHAO Y, LIU M M, FAN B B, et al. Pd nanoparticles supported on   Catalytic performance of highly dispersed nickel-silica catalysts in
                 ZIF-8 as an efficient heterogeneous catalyst for the selective   quinoline hydrogenation[J]. Fine Chemicals (精细化工), 2020,
                 hydrogenation of cinnamaldehyde[J]. Catalysis Communications,   37(2): 309-316.
                 2014, 57: 119-123.                            [30]  LIU Y X (刘迎新), ZHANG L (张粮), ZHANG K Y (张凯悦), et al.
            [12]  MIKHEEVA N N, ZAIKOVSKII V I, MAMONTOV G V. Synthesis   Synthesis of pyrrolidone compounds via  reductive amination of
                 of ceria nanoparticles in pores of SBA-15: Pore size effect and   levulinic acid with nitriles over Pd catalysts[J]. Fine Chemicals (精细
                 influence of citric  acid addition[J]. Microporous and Mesoporous   化工), 2021, 38(12): 2531-2538.
                 Materials, 2019, 277(1): 10-16.               [31]  FISH R H,  THORMODSEN A D, CREMER  G  A. Homogeneous
            [13]  GUO X C, WANG X C, GUAN J, et al. Selective hydrogenation of   catalytic hydrogenation. 1. Regiospecific reductions of polynuclear
                 D-glucose to D-sorbitol over Ru/ZSM-5 catalysts[J]. Chinese Journal   aromatic and polynuclear heteroaromatic nitrogen compounds
                 of Catalysis, 2014, 35(5): 733-740.               catalyzed by transition metal carbonyl hydrides[J]. Journal of  the
            [14]  BERGMANN A, MARTINEZ E, TESCHNER D, et al. Reversible   American Chemical Society, 1982, 104(39): 5234-5237.
                 amorphization and the catalytically active state of crystalline Co 3O 4   [32]  ZHANG  L, WANG X  Y, XUE  Y,  et al. Cooperation between the
                 during oxygen evolution[J]. Nature Communications, 2015, 6: 1-9.
            [15]  LIU J Z, NAI J W, YOU T T, et al. The flexibility of an amorphous   surface  hydroxyl groups of  Ru-SiO 2@mSiO 2  and water for  good
                 cobalt hydroxide  nanomaterial promotes the electrocatalysis of   catalytic performance for hydrogenation of quinoline[J]. Catalysis
                 oxygen evolution reaction[J]. Small, 2018, 14: 1703514.     Science & Technology, 2014, 4(7): 1939-1948.
            [16]  WANG B Y, YAN  X M, ZHANG X Y,  et al. Citric acid-modified   [33]  WANG B B, PAN H J, LU X H, et al. Copper-organic framework-
                 beta zeolite for polyoxymethylene dimethyl ethers synthesis: The   derived porous nanorods for chemoselective hydrogenation of
                 textural and acidic properties regulation[J]. Applied Catalysis B:   quinoline compounds at an  aqueous/oil interface[J]. ACS Applied
                 Environmental, 2020, 266: 118645.                 Nano Materials, 2021, 4(11): 11779-11790.
   184   185   186   187   188   189   190   191   192   193   194