Page 87 - 《精细化工》2023年第6期
P. 87
第 6 期 孙亚男,等: 基于醛基取代的氟硼二吡咯类荧光母体探针的合成及其应用 ·1237·
Reviews, 2017, 46(23): 7105-7123.
[6] CHAN J, DODANI S C, CHANG C J. Reaction-based small-
molecule fluorescent probes for chemoselective bioimaging[J].
Nature Chemistry, 2012, 4(12): 973-984.
[7] ZHANG B X, GE C P, FANG J G, et al. Selective selenol fluorescent
probes: Design, synthesis, structural determinants and biological
applications[J]. Journal of the American Chemical Society, 2015,
左列代表明场图像;中间代表荧光图像;右列代表叠加图像
137: 757-769.
图 36 HepG2 细胞用氰化钠处理 60 min,之后用 0.5 µmol/L [8] JIAO X Y, XIAO Y S, TANG B, et al. Evaluating drug-induced liver
探针 44 孵育 30 min 的荧光成像图 [42] injuy and itsemission via discrimination and imaging of HClO and
Fig. 36 Fluorescence imaging of viable HepG2 cells treated HgS with a two-photon fluorescent probe[J]. Analytical Chemistry,
with sodium cyanide for 60 min and then incubated 2018, 90: 7510-7516.
with 0.5 µmol/L probe 44 for 30 min [42] [9] WANG X, LI P, TANG B, et al. Spying on the function of hydroxyl
radical in brain of mice with depression phenotypes by two-photon
3 结束语与展望 fluorescence imaging[J]. Angewandte Chemie International Edition,
2019, 131: 4722-4726.
[10] CHENG D, GONG X Y, ZHANG X B, et al. A high-selectivity
本文综述了经典探针 BODIPY 母核 1~8 位点上 fluorescent reporter toward peroxynitrite in coexisting nonalcoholic
引入醛基,设计合成醛基取代 BODIPY 类荧光探针 fatty liver and drug induced liver diseases model[J]. Analytical
的方法。其探针结构构象可分为 α 位醛基 BODIPY、 Chemistry, 2020, 92: 11396-11404.
[11] JIANG W L, WANG W X, LI C Y, et al. Construction of NIR and
β 位醛基 BODIPY、meso 位醛基 BODIPY 及 1,7 位 ratiometric fluorescent probe for monitoring carbon monoxide under
醛基 BODIPY。α 位与 β 位醛基化可采用氧化或甲 oxidative stress in zebrafifish[J]. Analytical Chemistry, 2021, 93:
2510-2518.
酰化反应,易于制备。相对醛基直接引入 BODIPY
[12] HU J J, WONG N K, LU M Y, et al. Fluorescent probe HKSOX-1
母核的 meso 位或 1,7 位,通过芳基作为连接基团, for imaging and detection of endogenous superoxide in live cells and
可以实现醛基在 meso 位简便引入。不同的醛基位点 in vivo[J]. Journal of the American Chemical Society, 2015, 137:
6837-6843.
调控赋予了 BODIPY 差异化的光谱性能与应用价 [13] ZHAN Z X, LIU R, LV Y, et al. A novel turn-on fluorescent probe for
值。醛基取代 BODIPY 具有光物理、化学和光化学 exogenous and endogenous imaging of hypochlorous acid in living
性质可调节特性,实现对分析物的高灵敏度与高选 cells and quantitative application in flow cytometry[J]. Analytical
Chemistry, 2017, 89: 9544-9551.
择性识别。虽然醛基 BODIPY 探针在生物分子可视 [14] XUE Z W, ZHU R, HAN S F, et al. An organelle-directed staudinger
化领域取得了一些进展,但仍存在很多问题与挑战, reaction enabling fluorescence-on resolution of mitochondrial
electropotentials via a self-immolative charge reversal probe[J].
例如:提升探针单一性检测能力,增强探针对近红 Analytical Chemistry, 2018, 90: 2954-2962.
外光的吸收利用,研发双光子荧光探针等。开发具 [15] WU D, RYU J C, YOON J Y, et al. A far red emitting fluorescence
有更加灵敏传感效果的新型醛基 BODIPY 探针,及 probe for sensitive and selective detection of peroxynitrite in live
cells and tissues[J]. Analytical Chemistry, 2017, 89: 10924-10931.
深度剖析识别机制,也有待进一步研究。此外,设 [16] ALEXEY N B, BOSSI M L, LUKINAVICIUS G, et al.
计便捷、绿色的醛基取代 BODIPY 路线,构建创新 Triarylmethane fluorophores resistant to oxidative photobluing
hell[J]. Journal of the American Chemical Society, 2019, 141:
型分子结构,拓展交叉学科应用前景也是未来的发
981-989.
展方向。期望醛基取代 BODIPY 智能探针的后续在 [17] LI Y P, ZHANG N, WANG H L, et al. Fluorescence anisotropy-
生物分子成像、临床疾病诊断和治疗上实现突破性 based signal-off and signal-on aptamer assays using lissamine
Rhodamine B as label for ochratoxin A[J]. Journal of Agricultural
的进展。 and Food Chemistry, 2020, 68: 4277-4283.
[18] NING J, WANG W, FENG L, et al. Targeted enzyme activated two-
参考文献: photon fluorescent probes: A case study of CYP3A4 using a two-
[1] LOUDET A, BURGESS K. BODIPY dyes and their derivatives: dimensional design strategy[J]. Angewandte Chemie International
Syntheses and spectroscopic properties[J]. Chemical Reviews, 2007, Edition, 2019, 131: 10064-10068.
107(11): 4891-4932. [19] LI Z A, ZHAO P, ALEX K, et al. Zwitterionic cyanine-cyanine salt:
[2] CHEN W, MA X, CHEN H, et al. Fluorescent probes for pH and Structure and optical properties[J] The Journal of Physical Chemistry
alkali metal ions[J]. Coordination Chemistry Reviews, 2021, C, 2016, 120: 15378-15384.
427:213584. [20] HE Y, ZHU B, LI Q, et al. Chain length modulated dimerization and
[3] PARK S H, KWON N, LEE J H, et al. Synthetic ratiometric cyclization of terminal thienyl-blocked oligopyrranes[J]. Organic
fluorescent probes for detection of ions[J]. Chemical Society Letter, 2022, 24 (29): 5428-5432.
Reviews, 2020, 49: 143-179. [21] PAK Y Y, LI J, YOON J Y, et al. Mitochondria-targeted reaction
[4] SEDGWICK A C, WU L, HAN H H, et al. Excited-state based fluorescent probe for hydrogen sulfide[J]. Analytical
intramolecular proton-transfer (ESIPT) based fluorescence sensors Chemistry, 2016, 88: 5476-5481.
and imaging agents[J]. Chemical Society Reviews, 2018, 47(23): [22] DO T T, PHAM H D, SONAR P, et al. Molecular engineering
8842-8880. strategy for high efficiency fullerene-free organic solar cells using
[5] WU D, SEDGWICK A C, GUNNLAUGSON T, et al. Fluorescent conjugated 1,8-naphthalimide and fluorenone building blocks[J].
chemosensors: The past, present and future[J]. Chemical Society ACS Applied Materials & Interfaces, 2017, 9: 16967-16976.