Page 87 - 《精细化工》2023年第6期
P. 87

第 6 期              孙亚男,等:  基于醛基取代的氟硼二吡咯类荧光母体探针的合成及其应用                                   ·1237·


                                                                   Reviews, 2017, 46(23): 7105-7123.
                                                               [6]   CHAN J, DODANI S C, CHANG C J.  Reaction-based small-
                                                                   molecule fluorescent probes for chemoselective bioimaging[J].
                                                                   Nature Chemistry, 2012, 4(12): 973-984.
                                                               [7]   ZHANG B X, GE C P, FANG J G, et al. Selective selenol fluorescent
                                                                   probes: Design, synthesis, structural determinants and biological
                                                                   applications[J]. Journal of the American Chemical Society, 2015,
               左列代表明场图像;中间代表荧光图像;右列代表叠加图像
                                                                   137: 757-769.
            图 36  HepG2 细胞用氰化钠处理 60 min,之后用 0.5 µmol/L         [8]   JIAO X Y, XIAO Y S, TANG B, et al. Evaluating drug-induced liver
                  探针 44 孵育 30 min 的荧光成像图      [42]                 injuy and itsemission via discrimination and imaging of HClO and
            Fig. 36  Fluorescence imaging of viable HepG2 cells treated   HgS with a two-photon fluorescent probe[J]. Analytical  Chemistry,
                   with sodium cyanide for 60 min and then incubated   2018, 90: 7510-7516.
                   with 0.5 µmol/L probe 44 for 30 min [42]    [9]   WANG X, LI P, TANG B, et al. Spying on the function of hydroxyl
                                                                   radical in brain of mice with depression phenotypes by two-photon
            3   结束语与展望                                             fluorescence imaging[J]. Angewandte Chemie International Edition,
                                                                   2019, 131: 4722-4726.
                                                               [10]  CHENG D, GONG X  Y, ZHANG  X B,  et al. A  high-selectivity
                 本文综述了经典探针 BODIPY 母核 1~8 位点上                       fluorescent reporter toward peroxynitrite in coexisting nonalcoholic
            引入醛基,设计合成醛基取代 BODIPY 类荧光探针                             fatty liver and drug induced liver  diseases model[J]. Analytical
            的方法。其探针结构构象可分为 α 位醛基 BODIPY、                           Chemistry, 2020, 92: 11396-11404.
                                                               [11]  JIANG W L, WANG W X, LI C Y, et al. Construction of NIR and
            β 位醛基 BODIPY、meso 位醛基 BODIPY 及 1,7 位                   ratiometric fluorescent probe for monitoring carbon monoxide under
            醛基 BODIPY。α 位与 β 位醛基化可采用氧化或甲                           oxidative stress in zebrafifish[J]. Analytical Chemistry, 2021, 93:
                                                                   2510-2518.
            酰化反应,易于制备。相对醛基直接引入 BODIPY
                                                               [12]  HU J J, WONG N K, LU M Y, et al. Fluorescent probe HKSOX-1
            母核的 meso 位或 1,7 位,通过芳基作为连接基团,                          for imaging and detection of endogenous superoxide in live cells and
            可以实现醛基在 meso 位简便引入。不同的醛基位点                             in vivo[J]. Journal of the American Chemical Society, 2015, 137:
                                                                   6837-6843.
            调控赋予了 BODIPY 差异化的光谱性能与应用价                          [13]  ZHAN Z X, LIU R, LV Y, et al. A novel turn-on fluorescent probe for
            值。醛基取代 BODIPY 具有光物理、化学和光化学                             exogenous and endogenous imaging of hypochlorous acid in living
            性质可调节特性,实现对分析物的高灵敏度与高选                                 cells and quantitative application in flow cytometry[J].  Analytical
                                                                   Chemistry, 2017, 89: 9544-9551.
            择性识别。虽然醛基 BODIPY 探针在生物分子可视                         [14]  XUE Z W, ZHU R, HAN S F, et al. An organelle-directed staudinger
            化领域取得了一些进展,但仍存在很多问题与挑战,                                reaction enabling fluorescence-on  resolution of mitochondrial
                                                                   electropotentials  via a self-immolative  charge reversal probe[J].
            例如:提升探针单一性检测能力,增强探针对近红                                 Analytical Chemistry, 2018, 90: 2954-2962.
            外光的吸收利用,研发双光子荧光探针等。开发具                             [15]  WU D, RYU J C, YOON J Y, et al. A far red emitting fluorescence
            有更加灵敏传感效果的新型醛基 BODIPY 探针,及                             probe for sensitive and selective detection  of  peroxynitrite in live
                                                                   cells and tissues[J]. Analytical Chemistry, 2017, 89: 10924-10931.
            深度剖析识别机制,也有待进一步研究。此外,设                             [16]  ALEXEY N  B, BOSSI M L,  LUKINAVICIUS  G, et al.
            计便捷、绿色的醛基取代 BODIPY 路线,构建创新                             Triarylmethane fluorophores resistant to oxidative photobluing
                                                                   hell[J]. Journal of the American Chemical Society, 2019, 141:
            型分子结构,拓展交叉学科应用前景也是未来的发
                                                                   981-989.
            展方向。期望醛基取代 BODIPY 智能探针的后续在                         [17]  LI Y P,  ZHANG  N, WANG H L,  et al. Fluorescence anisotropy-
            生物分子成像、临床疾病诊断和治疗上实现突破性                                 based signal-off and signal-on aptamer assays using lissamine
                                                                   Rhodamine B  as label for ochratoxin A[J]. Journal of Agricultural
            的进展。                                                   and Food Chemistry, 2020, 68: 4277-4283.
                                                               [18]  NING J, WANG W, FENG L, et al. Targeted enzyme activated two-
            参考文献:                                                  photon fluorescent probes: A case study of CYP3A4  using a two-
            [1]   LOUDET A, BURGESS K. BODIPY dyes and their derivatives:   dimensional  design strategy[J].  Angewandte Chemie International
                 Syntheses and spectroscopic properties[J]. Chemical Reviews, 2007,   Edition, 2019, 131: 10064-10068.
                 107(11): 4891-4932.                           [19]  LI Z A, ZHAO P, ALEX K, et al. Zwitterionic cyanine-cyanine salt:
            [2]   CHEN W,  MA X, CHEN  H,  et al. Fluorescent probes for pH and   Structure and optical properties[J] The Journal of Physical Chemistry
                 alkali metal ions[J]. Coordination  Chemistry Reviews, 2021,   C, 2016, 120: 15378-15384.
                 427:213584.                                   [20]  HE Y, ZHU B, LI Q, et al. Chain length modulated dimerization and
            [3]   PARK S H, KWON N,  LEE J H,  et al. Synthetic ratiometric   cyclization of terminal thienyl-blocked oligopyrranes[J].  Organic
                 fluorescent probes for detection of ions[J]. Chemical Society   Letter, 2022, 24 (29): 5428-5432.
                 Reviews, 2020, 49: 143-179.                   [21]  PAK Y Y,  LI  J, YOON  J Y,  et al. Mitochondria-targeted reaction
            [4]   SEDGWICK A  C, WU L, HAN  H H,  et al. Excited-state   based fluorescent probe for hydrogen sulfide[J]. Analytical
                 intramolecular proton-transfer (ESIPT) based fluorescence sensors   Chemistry, 2016, 88: 5476-5481.
                 and imaging agents[J]. Chemical Society Reviews, 2018, 47(23):   [22]  DO T T, PHAM  H D, SONAR P,  et al. Molecular engineering
                 8842-8880.                                        strategy for  high efficiency fullerene-free organic solar cells using
            [5]   WU D, SEDGWICK A C, GUNNLAUGSON  T,  et al. Fluorescent   conjugated 1,8-naphthalimide and fluorenone building  blocks[J].
                 chemosensors: The past, present and future[J]. Chemical Society   ACS Applied Materials & Interfaces, 2017, 9: 16967-16976.
   82   83   84   85   86   87   88   89   90   91   92