Page 88 - 《精细化工》2023年第6期
P. 88

·1238·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [23]  LI P, ZHANG D, CHEN T, et al. Aggregation-caused quenching-type   [34]  GAO Y, PAN Y, CHI Y, et al. A "reactive" turn-on fluorescence probe
                 naphthalimide fluorophores grafted and lonized in a 3D  polymeric   for hypochlorous acid and its bioimaging application[J].
                 hydrogel network for highly fluorescent  and locally tunable   Spectrochimica Acta, Part: A Molecular and Biomolecular
                 emission[J]. ACS Macro Letters, 2019, 8(8): 937-942.   Spectroscopy, 2018, 206: 190-196.
                                                      2+
            [24]  MENG X J ( 孟宪 娇 ). Continuous recognition  of  Cu  and   [35]  XU X X, YING Q. A novel pyridyl triphenylamine-BODIPY
                 pyrophosphate based on BODIPY fluorescent probe[J]. Fine   aldoxime: Naked-eye visible and fluorometric chemodosimeter for
                 Chemicals (精细化工), 2021, 38(10): 2024-2041.        hypochlorite[J]. Spectrochimica Acta, Part A: Molecular &
            [25]  CHU Z X (储正相), WANG Y T (王雨田), MA Z X (马振兴), et al.   Biomolecular Spectroscopy, 2017, 183: 356-361.
                 Synthesis and photophysical properties of biological thiol fluorescent   [36]  GONALVES R,  PINA J, COSTA S,  et al. Synthesis and
                 probe based on BODIPY[J]. Fine Chemicals (精细化工), 2020,   characterization of aryl-substituted BODIPY dyes displaying distinct
                 37(7): 1372-1378.                                 solvatochromic singlet oxygen photosensitization efficiencies[J].
            [26]  WAGNER R W,  LNDSER J S. Boron-dipyrromethene dyes for   Dyes and Pigments, 2021, 196: 109784.
                 incorporation in synthetic multi-pigment light-harvesting arrays[J].   [37]  ZHU S, BI J, VEGESNA G, et al. Functionalization of BODIPY dyes
                 Pure & Applied Chemistry, 1996, 68(7): 1373-1380.   at 2,6-positions through formyl groups[J]. RSC  Advances, 2013, 3
            [27]  KANG J, HUO F, ZHANG Y, et al. A novel near-infrared ratiometric   (14): 4793-4800.
                 fluorescent probe for cyanide and its bioimaging applications[J].   [38]  KUMAR S, THORAT K G, RAVIKANTH M, et al. Synthesis and
                 Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy,   properties of covalently linked aza-BODIP-BODIPY dyads and
                 2018, 209: 95-99.                                 aza-BODIPY-(BODIPY) 2  triads[J]. Journal of Organic Chemistry,
            [28]  WU Q H, ZHOU J, WU Y, et al. Highly selective colorimetric and   2017, 82(13): 6568-6577.
                 fluorescent  BODIPY dyes for sensing of  cysteine  and/or   [39]  POIREL A, DE NICOLA A, ZIESSEL R, et al. Thiazolidine derivatives
                 homocysteine[J]. New Journal of Chemistry, 2016, 40(2): 1387-   from fluorescent dithienyl-BODIPY-carboxaldehydes  and  cysteine[J].
                 1395.                                             The Journal of Organic Chemistry, 2014, 79(23): 11463-11472.
            [29]  RAMOS-TORRES Á,  AVELANAL-ZABALLA E, PRIETO-   [40]  KAYA S. Rapid  and highly selective  BODIPY based turn-off
                 CASTANEDA A, et al. Formyl BODIPYs by pcc-promoted selective   colorimetric cyanide sensor[J]. Chemistry Select, 2021, 6(40):
                 oxidation of  α-methyl BODIPYs, synthetic versatility and   10910-10917.
                 applications[J]. Organic Letters, 2019, 21(12): 4563-4566.     [41]  ZHANG J, JIANG X D, SHAO X, et al. A turn-on NIR fluorescent
            [30]  LV F, YU Y, HAO E, et al. Highly regioselective α-formylation and   probe for the detection of homocysteine over cysteine[J]. RSC
                 α-acylation of BODIPY dyes  via tandem  cross-dehydrogenative   Advances, 2014, 4(96): 54080-54083.
                 coupling with  in situ deprotection[J]. Organic & Biomolecular   [42]  SUKATO  R, SANGPETCH N, PALAGA T,  et al. New turn-on
                 Chemistry, 2019, 17(20): 5121-5128.               fluorescent and colorimetric probe for cyanide detection based on
            [31]  JUAREZ L A, COSTERO A M, PARRA M, et al. 3-Formyl-BODIPY   BODIPY-salicylaldehyde  and its application in cell imaging[J].
                 phenylhydrazone as a chromo-fluorogenic probe for selective   Journal of Hazardous Materials, 2016, 314: 277-285.
                 detection of NO 2 (g)[J]. Chemistry, 2016, 22(25): 8448-8451.   [43]  MADHU S, BASU S K, JADHAV S,  et al.  3,5-Diformyl-
            [32]  MADHU S, RAO  M R, SHAIKH M S,  et al. 3,5-Diformylboron   borondipyrromethene for  selective detection of cyanide anion[J].
                 dipyrromethenes as fluorescent pH sensors[J]. Inorganic Chemistry,   Analyst, 2012, 138(1): 299-306.
                 2011, 50(10): 4392-4400.                      [44]  HE R K, ZHANG Y C, MADHU S, et al. BODIPY based realtime,
            [33]  JIAO L, YU C, LI J, et al. β-Formyl-BODIPYs from the Vilsmeier   reversible and targeted fluorescent probes for biothiol imaging in
                 Haack reaction[J]. Journal  of Organic Chemistry, 2009, 74(19):   living cells[J]. Chemical Communications, 2020, 56(93):  14717-
                 7525-7528.                                        14720.




            (上接第 1201 页)                                           demonstration of  dynamic temperature-dependent behavior of
            [91]  WANG Z, LIU J, LI Z, et al. Crosslinking modification of a porous   UiO-66 metal-organic framework: Compaction of hydroxylated and
                 metal-organic framework (UiO-66) and hydrogen storage properties   dehydroxylated forms of UiO-66 for high-pressure hydrogen storage
                 [J]. New Journal of Chemistry, 2020, 44(26): 11164-11171.   [J]. ACS  Applied Materials and Interfaces,  2020, 12(22): 24883-
            [92]  KIM K  C.  Design strategies for  metal-organic frameworks   24894.
                 selectively  capturing harmful gases[J]. Journal of Organometallic   [97]  ZHANG Z, LI Z, DONG Z, et al. Synergy of photocatalytic reduction
                 Chemistry, 2018, 854: 94-105.                     and adsorption for boosting  uranium removal with PMo 12/UiO-66
            [93]  DRISCOLL D M,  TROYA D, USOV P M,  et al. Geometry and   heterojunction[J]. Chinese Chemical Letters, 2022, 33(7): 3577-3580.
                 energetics of CO adsorption on  hydroxylated UiO-66[J]. Physical   [98]  REN L F (任龙芳), GAO X D (高晓东), ZHANG X Y (张馨月), et
                 Chemistry Chemical Physics, 2019, 21(9): 5078-5085.   al. Preparation of  UiO-66-NH 2/MoS 2@PUF and  its adsorption to
            [94]  LI Z, LIAO F, JIANG F, et al. Capture of H 2S and SO 2 from trace   Cr(Ⅵ) [J]. Fine Chemicals (精细化工) , 2023, 40(2): 398-406,447.
                 sulfur containing  gas mixture  by functionalized UiO-66 (Zr)   [99]  ZHANG X W, YANG Y X, QIN P G, et al. Facile preparation of
                 materials: A  molecular simulation study[J]. Fluid Phase Equilibria,   nano-g-C 3N 4/UiO-66-NH 2 composite as sorbent for high-efficient
                 2016, 427: 259-267.                               extraction and preconcentration of food colorants prior  to HPLC
            [95]  YANG Q, VAESEN S, RAGON F, et al. A water stable metal-organic   analysis[J]. Chinese Chemical Letters, 2022, 33(2): 903-906.
                 framework with optimal features for CO 2 capture[J]. Angewandte   [100]  YANG W, YU T, SUN L, et al. Pore-expanded UiO-66 pellets for
                 Chemie International Edtion, 2013, 52 (39): 10316-10320.   efficient bisphenol A adsorption[J]. Chemical Engineering Journal,
            [96]  BAMBALAZA S E, LANGMI H W, MOKAYA R, et al. Experimental   2023, 455: 140843.
   83   84   85   86   87   88   89   90   91   92   93