Page 88 - 《精细化工》2023年第6期
P. 88
·1238· 精细化工 FINE CHEMICALS 第 40 卷
[23] LI P, ZHANG D, CHEN T, et al. Aggregation-caused quenching-type [34] GAO Y, PAN Y, CHI Y, et al. A "reactive" turn-on fluorescence probe
naphthalimide fluorophores grafted and lonized in a 3D polymeric for hypochlorous acid and its bioimaging application[J].
hydrogel network for highly fluorescent and locally tunable Spectrochimica Acta, Part: A Molecular and Biomolecular
emission[J]. ACS Macro Letters, 2019, 8(8): 937-942. Spectroscopy, 2018, 206: 190-196.
2+
[24] MENG X J ( 孟宪 娇 ). Continuous recognition of Cu and [35] XU X X, YING Q. A novel pyridyl triphenylamine-BODIPY
pyrophosphate based on BODIPY fluorescent probe[J]. Fine aldoxime: Naked-eye visible and fluorometric chemodosimeter for
Chemicals (精细化工), 2021, 38(10): 2024-2041. hypochlorite[J]. Spectrochimica Acta, Part A: Molecular &
[25] CHU Z X (储正相), WANG Y T (王雨田), MA Z X (马振兴), et al. Biomolecular Spectroscopy, 2017, 183: 356-361.
Synthesis and photophysical properties of biological thiol fluorescent [36] GONALVES R, PINA J, COSTA S, et al. Synthesis and
probe based on BODIPY[J]. Fine Chemicals (精细化工), 2020, characterization of aryl-substituted BODIPY dyes displaying distinct
37(7): 1372-1378. solvatochromic singlet oxygen photosensitization efficiencies[J].
[26] WAGNER R W, LNDSER J S. Boron-dipyrromethene dyes for Dyes and Pigments, 2021, 196: 109784.
incorporation in synthetic multi-pigment light-harvesting arrays[J]. [37] ZHU S, BI J, VEGESNA G, et al. Functionalization of BODIPY dyes
Pure & Applied Chemistry, 1996, 68(7): 1373-1380. at 2,6-positions through formyl groups[J]. RSC Advances, 2013, 3
[27] KANG J, HUO F, ZHANG Y, et al. A novel near-infrared ratiometric (14): 4793-4800.
fluorescent probe for cyanide and its bioimaging applications[J]. [38] KUMAR S, THORAT K G, RAVIKANTH M, et al. Synthesis and
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, properties of covalently linked aza-BODIP-BODIPY dyads and
2018, 209: 95-99. aza-BODIPY-(BODIPY) 2 triads[J]. Journal of Organic Chemistry,
[28] WU Q H, ZHOU J, WU Y, et al. Highly selective colorimetric and 2017, 82(13): 6568-6577.
fluorescent BODIPY dyes for sensing of cysteine and/or [39] POIREL A, DE NICOLA A, ZIESSEL R, et al. Thiazolidine derivatives
homocysteine[J]. New Journal of Chemistry, 2016, 40(2): 1387- from fluorescent dithienyl-BODIPY-carboxaldehydes and cysteine[J].
1395. The Journal of Organic Chemistry, 2014, 79(23): 11463-11472.
[29] RAMOS-TORRES Á, AVELANAL-ZABALLA E, PRIETO- [40] KAYA S. Rapid and highly selective BODIPY based turn-off
CASTANEDA A, et al. Formyl BODIPYs by pcc-promoted selective colorimetric cyanide sensor[J]. Chemistry Select, 2021, 6(40):
oxidation of α-methyl BODIPYs, synthetic versatility and 10910-10917.
applications[J]. Organic Letters, 2019, 21(12): 4563-4566. [41] ZHANG J, JIANG X D, SHAO X, et al. A turn-on NIR fluorescent
[30] LV F, YU Y, HAO E, et al. Highly regioselective α-formylation and probe for the detection of homocysteine over cysteine[J]. RSC
α-acylation of BODIPY dyes via tandem cross-dehydrogenative Advances, 2014, 4(96): 54080-54083.
coupling with in situ deprotection[J]. Organic & Biomolecular [42] SUKATO R, SANGPETCH N, PALAGA T, et al. New turn-on
Chemistry, 2019, 17(20): 5121-5128. fluorescent and colorimetric probe for cyanide detection based on
[31] JUAREZ L A, COSTERO A M, PARRA M, et al. 3-Formyl-BODIPY BODIPY-salicylaldehyde and its application in cell imaging[J].
phenylhydrazone as a chromo-fluorogenic probe for selective Journal of Hazardous Materials, 2016, 314: 277-285.
detection of NO 2 (g)[J]. Chemistry, 2016, 22(25): 8448-8451. [43] MADHU S, BASU S K, JADHAV S, et al. 3,5-Diformyl-
[32] MADHU S, RAO M R, SHAIKH M S, et al. 3,5-Diformylboron borondipyrromethene for selective detection of cyanide anion[J].
dipyrromethenes as fluorescent pH sensors[J]. Inorganic Chemistry, Analyst, 2012, 138(1): 299-306.
2011, 50(10): 4392-4400. [44] HE R K, ZHANG Y C, MADHU S, et al. BODIPY based realtime,
[33] JIAO L, YU C, LI J, et al. β-Formyl-BODIPYs from the Vilsmeier reversible and targeted fluorescent probes for biothiol imaging in
Haack reaction[J]. Journal of Organic Chemistry, 2009, 74(19): living cells[J]. Chemical Communications, 2020, 56(93): 14717-
7525-7528. 14720.
(上接第 1201 页) demonstration of dynamic temperature-dependent behavior of
[91] WANG Z, LIU J, LI Z, et al. Crosslinking modification of a porous UiO-66 metal-organic framework: Compaction of hydroxylated and
metal-organic framework (UiO-66) and hydrogen storage properties dehydroxylated forms of UiO-66 for high-pressure hydrogen storage
[J]. New Journal of Chemistry, 2020, 44(26): 11164-11171. [J]. ACS Applied Materials and Interfaces, 2020, 12(22): 24883-
[92] KIM K C. Design strategies for metal-organic frameworks 24894.
selectively capturing harmful gases[J]. Journal of Organometallic [97] ZHANG Z, LI Z, DONG Z, et al. Synergy of photocatalytic reduction
Chemistry, 2018, 854: 94-105. and adsorption for boosting uranium removal with PMo 12/UiO-66
[93] DRISCOLL D M, TROYA D, USOV P M, et al. Geometry and heterojunction[J]. Chinese Chemical Letters, 2022, 33(7): 3577-3580.
energetics of CO adsorption on hydroxylated UiO-66[J]. Physical [98] REN L F (任龙芳), GAO X D (高晓东), ZHANG X Y (张馨月), et
Chemistry Chemical Physics, 2019, 21(9): 5078-5085. al. Preparation of UiO-66-NH 2/MoS 2@PUF and its adsorption to
[94] LI Z, LIAO F, JIANG F, et al. Capture of H 2S and SO 2 from trace Cr(Ⅵ) [J]. Fine Chemicals (精细化工) , 2023, 40(2): 398-406,447.
sulfur containing gas mixture by functionalized UiO-66 (Zr) [99] ZHANG X W, YANG Y X, QIN P G, et al. Facile preparation of
materials: A molecular simulation study[J]. Fluid Phase Equilibria, nano-g-C 3N 4/UiO-66-NH 2 composite as sorbent for high-efficient
2016, 427: 259-267. extraction and preconcentration of food colorants prior to HPLC
[95] YANG Q, VAESEN S, RAGON F, et al. A water stable metal-organic analysis[J]. Chinese Chemical Letters, 2022, 33(2): 903-906.
framework with optimal features for CO 2 capture[J]. Angewandte [100] YANG W, YU T, SUN L, et al. Pore-expanded UiO-66 pellets for
Chemie International Edtion, 2013, 52 (39): 10316-10320. efficient bisphenol A adsorption[J]. Chemical Engineering Journal,
[96] BAMBALAZA S E, LANGMI H W, MOKAYA R, et al. Experimental 2023, 455: 140843.