Page 143 - 《精细化工》2023年第8期
P. 143
第 8 期 张文谦,等: Cu(Ⅱ)配合物的制备、结构多样性及超氧化物歧化酶活性 ·1757·
copper-zinc superoxide dismutase activity in selected diseases[J]. single crystal structure analysis[M]. Second Edition. Beijing: Science
European Journal of Clinical Investigation, 2019, 49: e13036. Press (科学出版社), 2007.
[8] SASAKI T, ABE Y, TAKAYAMA M, et al. Association among [24] ADDISON A W, RAO T N, REEDIJK J, et al. Synthesis, structure,
extracellular superoxide dismutase genotype, plasma concentration, and spectroscopic properties of copper(Ⅱ) compounds containing
and comorbidity in the very old and centenarians[J]. Scientific nitrogen-sulphur donor ligands; The crystal and molecular structure
Reports, 2021, 11: 8539. of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(Ⅱ)
[9] GRIESS B, TOM E, DOMANN F, et al. Extracellular superoxide perchlorate[J]. Journal of the Chemical Society, Dalton Transactions,
dismutase and its role in cancer[J]. Free Radical Biology and 1984, (7): 1349-1356.
Medicine, 2017, 112: 464-479. [25] ZHANG W Q, KANG Y F, GUO L L, et al. Synthesis, structure and
[10] POLICAR C, BOUVET J, BERTRAND H C, et al. SOD mimics: fluorescent property of a novel 3D rod-packing microporous Zn(Ⅱ)
From the tool box of the chemists to cellular studies[J]. Current MOF based on a temperature-induced in situ ligand reaction[J].
Opinion in Chemical Biology, 2022, 67: 102109. ChemistrySelect, 2020, 5(4): 1439-1442.
[11] BORGSTAHL G E O, OBERLEY-DEEGAN R E. Superoxide [26] COWAN M G, OLGUÍN J, NARAYANASWAMY S, et al. Reversible
dismutases (SODs) and SOD mimetics[J]. Antioxidants, 2018, 7(11): switching of a cobalt complex by thermal, pressure, and electrochemical
156-158. stimuli: Abrupt, complete, hysteretic spin crossover[J]. Journal of the
[12] BONETTA R. Potential therapeutic applications of MnSODs and American Chemical Society, 2012, 134(6): 2892-2894.
SOD-mimetics[J]. Chemistry-A European Journal, 2018, 24(20): [27] TIERNEY D L. Jahn-Taylor dynamics in a series of high-symmetry
5032-5041. Co(Ⅱ) chelates determine paramagnetic relaxation enhancements[J].
[13] RICHAUD A, MÉNDEZ F, BARBA-BEHRENS N, et al. Electrophilic Journal of Physical Chemistry A, 2012, 116(45): 10959-10972.
modulation of the superoxide anion radical scavenging ability of [28] HE C Y (贺春雨), YANG X Q (杨小青), ZHANG Y H (张雁红),
copper(Ⅱ) complexes with 4-methyl imidazole[J]. Journal of Physical et al. Synthesis, structure and properties of three copper complexes
Chemistry A, 2021, 125(12): 2394-2401. based on a bifunctional ligand 2,2′:6′,2″-terpyridine-4′-carboxylic
[14] OSHI R. Superoxide radical anion scavenging and dismutation by acid[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),
2+
2+
some Cu and Mn complexes: A pulse radiolysis study[J]. Radiation 2021, 37(12): 2267-2278.
Physics and Chemistry, 2017, 139: 74-82. [29] WANG X T, LI R Y, LIU A G, et al. Syntheses, crystal structures,
[15] SINGH O, TYAGI N, OLMSTEAD M M, et al. The design of synthetic antibacterial activities of Cu(Ⅱ) and Ni(Ⅱ) complexes based on
superoxide dismutase mimetics: Seven-coordinate water soluble terpyridine polycarboxylic acid ligand[J]. Journal of Molecular
manganese( Ⅱ ) and iron( Ⅱ ) complexes and their superoxide Structure, 2019, 1184: 503-511.
dismutase-like activity studies[J]. Dalton Transactions, 2017, 46(41): [30] GAO E J, FENG Y H, SU J Q, et al. Synthesis, characterization,
14186-14191. DNA binding, apoptosis and molecular docking of three Mn(Ⅱ),
[16] WU T, HUANG S M, YANG H S, et al. Bimetal biomimetic Zn(Ⅱ) and Cu(Ⅱ) complexes with terpyridine-based carboxylic
engineering utilizing metal-organic frameworks for superoxide acid[J]. Applied Organometallic Chemistry, 2017, 32(3): 4164.
Ⅱ
dismutase mimic[J]. ACS Materials Letters, 2022, 4(4): 751-757. [31] LI C(李晨). Cu N 2O 2 multi-functional SOD mimics: Synthesis,
[17] IBRAHIM M M, EL-KEMARY M A, AL-HARBI S A, et al. activities in vitro and biological models, theoretical calculations[D].
Synthesis and structural characterization of pyridine-based Mn(Ⅲ), Xi'an: Northwest University (西北大学), 2016.
Fe(Ⅲ), and Co(Ⅲ) complexes as SOD mimics and BSA binding [32] QU J S (瞿隽申), ZHOU H (周红), PAN Z Q (潘志权). Synthesis,
studies[J]. Journal of Molecular Structure, 2021, 1228: 129706. Characterization of two novel schiff base manganese (Ⅱ) complex-
[18] BAZARGANA M, MIRZAEIA M, AGHAMOHAMADIA M, et al. chitosan composites and their SOD like activity[J]. Chemistry &
Supramolecular assembly of a 2D coordination polymer bearing Bioengineering (化学与生物工程), 2017, 34(7): 24-30.
pyridine-N-oxide-2,5-dicarboxylic acid and copper ion: X-ray [33] PUCHOŇOVÁ M, ŠVOREC J, ŠVORC L′, et al. SOD mimetic
crystallography and DFT calculations[J]. Journal of Molecular Structure, activity of salicylatocopper complexes[J]. Chemical Papers, 2016,
2020, 1202: 127243. 70: 75-81.
[19] KANG Y F, LIU J Q, LIU B, et al. Series of Cd(Ⅱ) and Pb(Ⅱ) [34] DIÓSZEGI R, BONCZIDAI-KELEMEN D, BÉNYEI A C, et al.
coordination polymers based on a multilinker (R,S-)2,2′-bipyridine- Copper (Ⅱ) complexes of pyridine-2,6-dicarboxamide ligands with
3,3′-dicarboxylate-1,1′-dioxide[J]. Crystal Growth & Design, 2014, high SOD activity[J]. Inorganic Chemistry, 2022, 61(4): 2319-2332.
14(11): 5466-5476. [35] HUANG X P, WANG H L, XU Q, et al. Synthesis, characterization
[20] XIONG Y, FAN Y Z, YANG R, et al. Amide and N-oxide and SOD activity of bisbenzimidazole-based copper (Ⅱ) complexes[J].
functionalization of T-shaped ligands for isoreticular MOFs with Journal of Molecular Structure, 2022, 1254: 132334.
giant enhancements in CO 2 separation[J]. Chemical Communications, [36] HAN X T, SHI X K, HUANG G Z, et al. Two zinc (Ⅱ) coordination
2014, 50(93): 14631-14634. polymers based on aliphatic ether Schiff base: Synthesis, crystal
[21] XU L (徐历). Preparation properties of functional coordination structure, antioxidation and fluorescence[J]. Applied Organometallic
polymers based on nitrogen oxide ligand and study on composite Chemistry, 2018, 32(9): e4453.
material[D]. Xi'an: Shaanxi University of Science and Technology [37] DONG J P, LI R X, JIANG Y X, et al. A one-dimensional Cd-Eu
(陕西科技大学), 2019. coordination polymer with open-chain ether Schiff base ligand and
[22] SHELDRICK G M. SHELXS-97: Program for the refinement of 4,4′-bipyridine: Synthesis, structure, luminescence property, and
crystal structures[M]. Göttingen: University of Göttingen, 1997. antioxidation activities[J]. Journal of the Chinese Chemical Society,
[23] CHEN X M (陈小明), CAI J W (蔡继文). Principle and practice of 2021, 68(10): 1934-1941.