Page 143 - 《精细化工》2023年第8期
P. 143

第 8 期                张文谦,等: Cu(Ⅱ)配合物的制备、结构多样性及超氧化物歧化酶活性                                 ·1757·


                 copper-zinc superoxide dismutase activity in selected diseases[J].   single crystal structure analysis[M]. Second Edition. Beijing: Science
                 European Journal of Clinical Investigation, 2019, 49: e13036.   Press (科学出版社), 2007.
            [8]   SASAKI T, ABE  Y, TAKAYAMA  M,  et al. Association among   [24]  ADDISON A W, RAO T N, REEDIJK J, et al. Synthesis, structure,
                 extracellular superoxide dismutase genotype, plasma  concentration,   and spectroscopic properties  of copper(Ⅱ) compounds  containing
                 and comorbidity in the very old and centenarians[J]. Scientific   nitrogen-sulphur donor ligands; The crystal and molecular structure
                 Reports, 2021, 11: 8539.                          of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(Ⅱ)
            [9]   GRIESS B, TOM  E, DOMANN F,  et al. Extracellular superoxide   perchlorate[J]. Journal of the Chemical Society, Dalton Transactions,
                 dismutase and its role in cancer[J]. Free Radical Biology and   1984, (7): 1349-1356.
                 Medicine, 2017, 112: 464-479.                 [25]  ZHANG W Q, KANG Y F, GUO L L, et al. Synthesis, structure and
            [10]  POLICAR C, BOUVET J,  BERTRAND H C,  et al. SOD mimics:   fluorescent property of a novel 3D rod-packing microporous Zn(Ⅱ)
                 From the tool box of the chemists to cellular studies[J].  Current   MOF based on a temperature-induced  in situ  ligand reaction[J].
                 Opinion in Chemical Biology, 2022, 67: 102109.    ChemistrySelect, 2020, 5(4): 1439-1442.
            [11]  BORGSTAHL  G E O, OBERLEY-DEEGAN R E. Superoxide   [26]  COWAN M G, OLGUÍN J, NARAYANASWAMY S, et al. Reversible
                 dismutases (SODs) and SOD mimetics[J]. Antioxidants, 2018, 7(11):   switching of a cobalt complex by thermal, pressure, and electrochemical
                 156-158.                                          stimuli: Abrupt, complete, hysteretic spin crossover[J]. Journal of the
            [12]  BONETTA  R. Potential therapeutic applications of MnSODs and   American Chemical Society, 2012, 134(6): 2892-2894.
                 SOD-mimetics[J].  Chemistry-A European Journal, 2018, 24(20):   [27]  TIERNEY D L. Jahn-Taylor dynamics in a series of high-symmetry
                 5032-5041.                                        Co(Ⅱ) chelates determine paramagnetic relaxation enhancements[J].
            [13]  RICHAUD A, MÉNDEZ F, BARBA-BEHRENS N, et al. Electrophilic   Journal of Physical Chemistry A, 2012, 116(45): 10959-10972.
                 modulation of the superoxide anion  radical scavenging  ability of   [28]  HE C  Y (贺春雨), YANG X Q (杨小青), ZHANG Y H (张雁红),
                 copper(Ⅱ) complexes with 4-methyl imidazole[J]. Journal of Physical   et al. Synthesis, structure and properties of three copper complexes
                 Chemistry A, 2021, 125(12): 2394-2401.            based on a bifunctional ligand 2,2′:6′,2″-terpyridine-4′-carboxylic
            [14]  OSHI R. Superoxide radical  anion scavenging and dismutation by   acid[J]. Chinese Journal  of  Inorganic Chemistry (无机化学学报),
                      2+
                            2+
                 some Cu  and Mn  complexes: A pulse radiolysis study[J]. Radiation   2021, 37(12): 2267-2278.
                 Physics and Chemistry, 2017, 139: 74-82.      [29]  WANG X T, LI R Y, LIU A G, et al. Syntheses, crystal structures,
            [15]  SINGH O, TYAGI N, OLMSTEAD M M, et al. The design of synthetic   antibacterial activities of Cu(Ⅱ) and Ni(Ⅱ) complexes based on
                 superoxide dismutase  mimetics: Seven-coordinate water soluble   terpyridine polycarboxylic acid ligand[J]. Journal of  Molecular
                 manganese( Ⅱ ) and iron( Ⅱ ) complexes and their superoxide   Structure, 2019, 1184: 503-511.
                 dismutase-like activity studies[J]. Dalton Transactions, 2017, 46(41):   [30]  GAO E J, FENG  Y H, SU J Q,  et al. Synthesis, characterization,
                 14186-14191.                                      DNA binding, apoptosis and molecular docking of three Mn(Ⅱ),
            [16]  WU T, HUANG  S M, YANG H S,  et al. Bimetal  biomimetic   Zn(Ⅱ) and Cu(Ⅱ) complexes with  terpyridine-based carboxylic
                 engineering  utilizing metal-organic frameworks  for superoxide   acid[J]. Applied Organometallic Chemistry, 2017, 32(3): 4164.
                                                                              Ⅱ
                 dismutase mimic[J]. ACS Materials Letters, 2022, 4(4): 751-757.   [31] LI  C(李晨). Cu N 2O 2 multi-functional SOD mimics: Synthesis,
            [17]  IBRAHIM M M,  EL-KEMARY  M  A, AL-HARBI S A,  et al.   activities in vitro and biological models, theoretical calculations[D].
                 Synthesis and structural characterization of pyridine-based Mn(Ⅲ),   Xi'an: Northwest University (西北大学), 2016.
                 Fe(Ⅲ), and Co(Ⅲ) complexes as SOD  mimics  and BSA binding   [32]  QU J S (瞿隽申), ZHOU H (周红), PAN Z Q (潘志权). Synthesis,
                 studies[J]. Journal of Molecular Structure, 2021, 1228: 129706.   Characterization of two novel schiff base manganese (Ⅱ) complex-
            [18]  BAZARGANA M, MIRZAEIA M, AGHAMOHAMADIA M, et al.   chitosan composites and their SOD like activity[J]. Chemistry &
                 Supramolecular assembly of a 2D coordination polymer bearing   Bioengineering (化学与生物工程), 2017, 34(7): 24-30.
                 pyridine-N-oxide-2,5-dicarboxylic acid and copper  ion: X-ray   [33] PUCHOŇOVÁ M, ŠVOREC J, ŠVORC L′,  et al. SOD mimetic
                 crystallography and DFT calculations[J]. Journal of Molecular Structure,   activity of salicylatocopper complexes[J]. Chemical Papers, 2016,
                 2020, 1202: 127243.                               70: 75-81.
            [19]  KANG  Y F, LIU J Q,  LIU B,  et al.  Series of Cd(Ⅱ) and Pb(Ⅱ)   [34]  DIÓSZEGI R, BONCZIDAI-KELEMEN D, BÉNYEI A C,  et al.
                 coordination polymers based on a multilinker (R,S-)2,2′-bipyridine-   Copper (Ⅱ) complexes of pyridine-2,6-dicarboxamide ligands with
                 3,3′-dicarboxylate-1,1′-dioxide[J]. Crystal Growth & Design, 2014,   high SOD activity[J]. Inorganic Chemistry, 2022, 61(4): 2319-2332.
                 14(11): 5466-5476.                            [35]  HUANG X P, WANG H L, XU Q, et al. Synthesis, characterization
            [20]  XIONG Y,  FAN Y Z,  YANG  R,  et al. Amide  and  N-oxide   and SOD activity of bisbenzimidazole-based copper (Ⅱ) complexes[J].
                 functionalization of  T-shaped ligands for isoreticular MOFs with   Journal of Molecular Structure, 2022, 1254: 132334.
                 giant enhancements in CO 2 separation[J]. Chemical Communications,   [36]  HAN X T, SHI X K, HUANG G Z, et al. Two zinc (Ⅱ) coordination
                 2014, 50(93): 14631-14634.                        polymers based on aliphatic ether Schiff base: Synthesis, crystal
            [21]  XU L (徐历). Preparation properties of functional coordination   structure, antioxidation and fluorescence[J]. Applied Organometallic
                 polymers based on nitrogen oxide ligand and study on composite   Chemistry, 2018, 32(9): e4453.
                 material[D]. Xi'an: Shaanxi University of Science  and  Technology   [37]  DONG J P,  LI R  X, JIANG  Y X, et al. A one-dimensional Cd-Eu
                 (陕西科技大学), 2019.                                   coordination polymer with open-chain ether Schiff base ligand and
            [22]  SHELDRICK G  M. SHELXS-97: Program for the refinement of   4,4′-bipyridine:  Synthesis, structure, luminescence property, and
                 crystal structures[M]. Göttingen: University of Göttingen, 1997.   antioxidation activities[J]. Journal of the Chinese Chemical Society,
            [23]  CHEN X M (陈小明), CAI J W (蔡继文). Principle and practice of   2021, 68(10): 1934-1941.
   138   139   140   141   142   143   144   145   146   147   148